Key Engineering Materials Vol. 664

Paper Title Page

Abstract: Tests were performed on two Carbon-Manganese steels (A42 and A48 steels, French standard) in the gigacycle fatigue domain thanks to a piezoelectric fatigue machine working at 20000Hz. During the tests, temperature recordings were achieved by an infrared camera for various stress amplitudes. The main difference between the two steels compositions was the aluminum content (0.045% for the A42 steel and 0.004% for the A48 steel), and the carbon content (0.140% for the A 42 steel and 0.198% for the A48 steel). In the A48 steel, the few aluminum content induces a higher free content of solute nitrogen in the lattice. Mechanical spectroscopy tests were performed and gave qualitative results on the solute contents repartition in the lattice. The temperature increase recorded during the fatigue tests for the two steels are different at the beginning of the tests. The differences can be explained by the different repartition of the solute atoms which induces a different dislocation gliding between the two materials. At the end of the tests, the thermal recordings are similar and attributed to the evolution of the solute atoms repartition and the dislocation structure.
177
Abstract: The fatigue life forming fine granular area (FGA) is expected to occupy a large fraction of the total fatigue life. In order to examine the commencing time of the FGA forming and estimate the fatigue limit in the interior inclusion induced fracture mode, rotating bending fatigue tests were carried out by using SUJ2 specimens with and without the hydrogen charge. Especially, the hydrogen charge time was set in the wide variety of the cyclic loadings to confirm the FGA forming process supposing the effect of the hydrogen charge on the fatigue crack propagation behavior. From experimental and analytical results, it is concluded that the FGA formation is already started at early stage as 5 % of the fatigue life. Another finding is that we have a clear correlation between the stress intensity factor range and the FGA growth ratio. Based on this aspect, the critical value of the stress intensity factor range in which the FGA is not formed around the inclusion was given as 2.65 MPa.
188
Abstract: The VHCF behavior of age hardened 2024 and 7075 aluminum sheets was studied. The experiments were performed at frequencies of ≈ 20 kHz with fully reversed axial loading (R = -1). Special focus was put on the influence of AA 1050 claddings and riblet-like surface structures, which are used in aerospace applications to reduce aerodynamic drag. The fatigue life and fatigue limit of the AA 2024 bare material are – compared to the non-structured case – significantly reduced by the stress concentrations induced by the riblet structure. However, the fatigue behavior of the clad AA 2024 material is less sensitive to the surface structure. In this case, we obtained a sharp transition from HCF failure up to 5x106 cycles to run-outs at ≥ 2x109 cycles. This threshold value for failure differs with cladding thickness as well as with riblet geometry. We attribute this to the modified stress distribution near the interface (cladding/substrate) as well as to a locally reduced thickness of the cladding in the riblet valleys. Fatigue cracks are – even in the case of run-outs – always initiated at the surface of the clad layer and grow easily to the substrate. Samples only fail, if the threshold for further crack growth into the substrate is exceeded. Both Alclad 2024 and 7075 show the same failure mechanism.
199
Abstract: In order to investigate the interior-induced fatigue crack propagation behavior of high cleanliness valve spring steel (JIS SWOSC-V), rotating bending fatigue tests were performed for various kinds of specimens with different hardness or surface finishings. The harder specimen with higher compressive residual stress showed longer fatigue life. The electrochemical polished specimen pre-treated with shot peening showed almost same fatigue life as the shot-peened specimen in spite of the difference in surface roughness. After fatigue tests, fracture surfaces were observed using a scanning electron microscope (SEM) to evaluate the fatigue fracture mechanism. Most specimens failed in surface-induced fracture mode due to high cleanliness; however, some specimens failed in interior-induced fracture mode in the very high cycle regime. Although non-metallic inclusions were not observed at interior fatigue crack initiation sites, 2 types of significant microstructures (with smooth surface or granular surface) were observed. EBSD analysis, profile analysis and computational simulation using a fracture surface topographic analysis (FRASTA) method were performed to investigate the mechanism of the interior-induced fatigue fracture caused by the microstructure at defect without any inclusion.
209
Abstract: In the fabrication process of medicine tablets, working speed of the tablet compressing is an important factor to realize the high fabricating efficiency together with the low cost. Thus, a number of loadings would be applied with very high frequency to tips of a couple of compressing punches. Sometimes, the tablet compressing speed exceeds 150 tablets per second. Due to such a circumstance, the very high cycle loadings are applied to the tips of the compressing punches making medicine tablets. The high strength steel of KNS-ES was specially designed and fabricated for the particular use as the compressing punches. In this study, very high cycle fatigue tests were performed in the loading type of rotating bending in order to obtain the fundamental S-N property of this steel. Based on experimental results, the S-N property in giga-cycle regime was discussed including the effect of the residual stress on the S-N properties. Consequently, the duplex S-N curves were clearly found, but the surface-induced fractures were often found in the fatigue data belonging to the second S-N curve in the longer life region.
221
Abstract: This research concerns the metals behavior as varying, with increasing cyclic stress level, in the transition range between the ultrahigh cycle (UHCF) and high cycle (HCF) fatigue regimes. Having analyzed the synergetics of surface crack initiation, the authors propose to identify the UHCF-to-HCF transition with a certain stress level corrected, with the respective dimensionless functions, for the effect of the environmental attacks, temperature, surface roughness of the test piece, etc. on the crack initiation behavior. Subsurface initiation of a fatigue crack occurs in the test-material susceptible of a deformation-induced transition to superplasticity state, which favors formation of the nanocrystalline zone bordered by a fine-granular area Another case of subsurface cracking is in that a local even area forms owing to the vortex-like deformation combined with the diffusion of the retained gases toward and into the discontinuity. A proposed equation is plainly descriptive of the subsurface growth of fatigue-cracks and allowing to acquire the crack growth duration from the fractography data.Nomenclature
231
Abstract: Low-pressure steam turbine blades undergo VHCF-loadings induced by inhomogenous flow behind the vanes resulting in excitation frequencies of ≈ 2 kHz for rotational speeds of 50 Hz and a typical number of stator vanes of ≈ 60. The VHCF loading is superimposed by considerable mean stresses caused by centrifugal forces. In the present study, the VHCF-behavior of the ferritic-martensitic turbine blade steel X10CrNiMoV12-2-2 is investigated using an ultrasonic fatigue testing system up to cycle numbers of 5∙109 at stress ratios from R = -1 up to 0.7, i.e. up to very high mean stresses. Generally, crack initiation changes from the surface to internal inclusions at fatigue lives around 4∙107. The transition between fatigue failure and run-outs is shifted to higher lifetime with increasing R, and fine grained areas (FGAs) at the crack initiation sites only occur at R < -0.1. However, the fracture mechanics approach proposed by Murakami consistently describes the lifetime behavior for all load ratios over 4 decades of lifetime. At R up from 0.5 considerable cyclic creep occurs, even for lifetimes above 108 cycles, resulting in cyclic hardening which was proved by microhardness measurements at longitudinal sections. This effect at least partially explains the high maximum stresses close to the tensile strength of the material occurring in the VHCF regime at load ratios ≥ 0.5.
246
Abstract: In order to ensure the long term durability of mechanical structures, the fatigue property of structural components should be clarified in the long life region such as the gigacycle regime. The rotating bending fatigue tests in very high cycle regime were carried out for a nickel chromium molybdenum steel for structural use of machines (JIS Material Code: SNCM439) in this study. Based on the initiation site of the fatigue crack, fracture modes were classified into the following typical three modes: (1) usual surface fracture, (2) surface defect-initiated fracture and (3) interior inclusion-initiated fracture, respectively. In S-N diagram, experimental data in the usual surface fracture mode appeared at higher stress levels with fewer loading cycles, whereas the data in the other two fracture modes appeared at lower stress levels with more loading cycles. Thus, the duplex S-N property was confirmed for this steel in the very long life regime. In order to clarify the fatigue mechanism of the interior inclusion-initiated fracture, the quantitative evaluations were made by applying the stress intensity factor range. The fatigue crack initiation and propagation processes in the interior inclusion-initiated fracture were divided into four stages: formation of the fine granular area (FGA) due to initiation and coalescence of micro-debondings, formation of the fish-eye due to penny-shape crack propagation, crack propagation as surface crack and final catastrophic fracture.
255
Abstract: High frequency push-pull fatigue experiments on the austenitic-ferritic duplex stainless steel X2CrNiMoN22-5-3 (318LN) revealed that crack nucleation and crack propagation through the first grain determine significantly the lifetime of the material. Only in very few cases it was observed that fatigue samples which endured one billion load cycles without failure (run-out samples) contain microcracks which reached or overcame the first microstructural barrier (phase or grain boundary). This leads to the conclusion that in most cases the highest macroscopic stress or strain amplitude which does not lead to fatigue crack propagation through the entire first grain can be considered as the fatigue limit of the material. The present study documents that the experimentally identified fatigue mechanisms can be represented in mesoscopic finite element simulations by taking into account the effects of anisotropic elasticity, crystal plasticity, macro and micro residual stresses, plastic strain concentration in form of slip bands, crack nucleation and short crack propagation through the first grain. The current investigation shows that such simulations enable the determination of the fatigue limit of both real and synthetic microstructures. By means of real microstructures, containing slip traces and microcracks, the calculations can be verified and the required microstructural parameters can be determined.
267
Abstract: In recent years, the core engineering components of high-speed train, automobiles and aircrafts are required to endure fatigue loads up from 108 to 1010 cycles. The present study results show that in the very high cycle fatigue (VHCF) regimes of more than 107 cycles, the fatigue failure of high strength steel materials can occur below the traditional fatigue limit, hence the VHCF investigations of high strength steels not only help to further understand the fatigue essence and mechanism, but also do research on the fatigue design and life assessment method. This paper summarizes works of VHCF researches for high strength steels in recent years, such as the characteristics of S-N curve, the observations on fish-eye, which is one of the typical characteristics of fracture surface, crack initiation, crack propagation, etc. The present work also analyzes the fatigue mechanisms and briefly discusses several factors that affect VHCF properties, such as hydrogen effect, inclusion effect, frequency effect. Some possible and prospective aspects of future researches are also proposed.
275

Showing 21 to 30 of 35 Paper Titles