Non-Plasma Dry Etcher Design for 200 mm-Diameter Silicon Carbide Wafer

Article Preview

Abstract:

For improving the productivity of the semiconductor silicon carbide power devices, a very large diameter wafer process was studied, particularly for the non-plasma wafer etching using the chlorine trifluoride gas. Taking into account the motion of heavy gas, such as the chlorine trifluoride gas having the large molecular weight, the transport phenomena in the etching reactor were evaluated and designed using the computational fluid dynamics. The simple gas distributor design for a 200-mm-diameter wafer was evaluated in detail in order to uniformly spread the etchant gas over the wide wafer surface.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1004)

Pages:

167-172

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Shimura, Semiconductor Silicon Crystal Technology, Academic Press, San Diego, USA (1989).

Google Scholar

[2] D. Yajima, Y. Fukumoto, H. Habuka and T. Kato, The 73th JSAP Autumn Meeting, 12p-H7-3 (2012).

Google Scholar

[3] D. Yajima, H. Habuka and T. Kato, Silicon Carbide Dry Etcher Using Chlorine Trifluoride Gas, Mater. Sci. Forum, 778-780 (2014) 738-741.

DOI: 10.4028/www.scientific.net/msf.778-780.738

Google Scholar

[4] D. Yajima, K. Nakagomi, H. Habuka and T. Kato, Chlorine Trifluoride Gas Transport and Etching Rate Distribution in Silicon Carbide Dry Etcher, Mater. Sci. Forum, 821-823 (2015) 553-556.

DOI: 10.4028/www.scientific.net/msf.821-823.553

Google Scholar

[5] K. Nakagomi, S. Okuyama, H. Habuka, Y. Takahashi and T. Kato, A Method to Adjust Polycrystalline Silicon Carbide Etching Rate Profile by Chlorine Trifluoride Gas, Materi. Sci. Forum, 897 (2017) 383-386.

DOI: 10.4028/www.scientific.net/msf.897.383

Google Scholar

[6] S. Okuyama, K. Kurashima, H. Habuka, Y. Takahashi and T. Kato, Mirror Etching of Single Crystalline C-Face 4H-Silicon Carbide Wafer by Chlorine Trifluoride Gas, ECS J. Solid State Sci. Technol., 6 (2017) P582-P585.

DOI: 10.1149/2.0131709jss

Google Scholar

[7] K. Kurashima, R. Kawasaki, K. Irikura, S. Okuyama, H. Habuka, Y. Takahashi, T. Kato, Chlorine Trifluoride Gas Distributor Design for Single-Crystalline C-Face 4H-Silicon Carbide Wafer Etcher, Materi. Sci. Forum, 963 (2019) 520-524.

DOI: 10.4028/www.scientific.net/msf.963.520

Google Scholar

[8] Y. Miura, Y. Katsumi, S. Oda, H. Habuka, Y. Fukai, K. Fukae, T. Kato, H. Okumura and K. Arai, Determination of Etch Rate of 4H-Silicon Carbide Using Chlorine Trifluoride Gas, Jpn. J. Appl. Phys. 46 (2007) 7875-7879.

DOI: 10.1143/jjap.46.7875

Google Scholar

[9] K. Irikura., R. Kawasaki., H. Habuka., Y. Takahashi. and T. Kato, Etching Rate Profile of C-Face 4H-SiC Wafer Depending on Total Gas Flow Rate of Chlorine Trifluoride and Nitrogen, Submitted to Materi. Sci. Forum.

DOI: 10.4028/www.scientific.net/msf.1004.173

Google Scholar