Anomalous Temperature Dependence of the Hall Coefficient of Heavily Al-Doped 4H-SiC Epilayers in the Band Conduction Region

Article Preview

Abstract:

We investigate the temperature dependence of the resistivity and Hall coefficient for heavily Al-doped p-type 4H-SiC epilayers with Al concentrations (C_Al) of > 2E19 cm^−3, which are substrates for the collectors of insulated-gate bipolar transistors. The signs of the measured Hall co- efficients (R_H) changed from positive to negative at low temperatures. For epilayers with C_Al values of < 3E19 cm^−3, a negative R_H was observed in the hopping conduction region. In contrast, for epilayers with C_Al values of > 3E19 cm^−3, a negative R_H was observed in not only the hopping conduction region but also the band conduction region, which is a striking feature because the movement of free holes in the valence band should make R_H positive. For an epilayer with C_Al of 1.8E20 cm^−3, the sign of R_H clearly changed three times in the band conduction region. Moreover, the activation energies of the temperature-dependent R_H values were similar to those of the temperature-dependent resistivity in the corresponding temperature ranges, irrespective of the conduction mechanisms (band and hopping conduction).

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] T. Miyazawa, S.Y. Ji, K. Kojima, Y. Ishida, K. Nakayama, A. Tanaka, K. Asano and H. Tsuchida: Mater. Sci. Forum Vol. 778­780 (2014), p.135.

Google Scholar

[2] S.Y. Ji, K. Kojima, Y. Ishida, S. Saito, H. Yamaguchi, S. Yoshida, H. Tsuchida and H. Okumura: Jpn. J. Appl. Phys. Vol. 54 (2015), p. 04DP08.

DOI: 10.7567/jjap.54.04dp08

Google Scholar

[3] S.Y. Ji, K. Kojima, Y. Ishida, H. Tsuchida, S. Yoshida and H. Okumura: Mater. Sci. Forum Vol. 740­742 (2013), p.181.

Google Scholar

[4] S.Y. Ji, K. Kojima, Y. Ishida, S. Saito, T. Kato, H. Tsuchida, S. Yoshida and H. Okumura: J. Crystal Growth Vol. 380 (2013), 85.

Google Scholar

[5] A.O. Evwaraye, S. R. Smith, W. C. Mitchel and M. D. Roth: Appl. Phys. Lett. Vol. 68 (1996), p.3159.

Google Scholar

[6] J. Pernot, S. Contreras, and J. Camassel: J. Appl. Phys. Vol. 98 (2005), p.023706.

Google Scholar

[7] A. Parisini and R. Nipoti: J. Appl. Phys. Vol. 114 (2013), p.243703.[8] A. Parisini, M. Gorni, A. Nath, L. Belsito, M. V. Rao, and Nipoti: J. Appl. Phys. Vol. 118 (2015), p.035101.

DOI: 10.1063/1.4926751

Google Scholar

[9] A. Parisini, A. Parisini, and R. Nipoti: J. Phys.: Condens. Matter Vol. 29 (2017), p.035703.

DOI: 10.1088/1361-648x/29/3/035703

Google Scholar

[10] M. Krieger, K. Semmelroth and G. Pensl: Mater. Sci. Forum Vol. 457­460 (2004), p.685.

Google Scholar

[11] M. Krieger, K. Semmelroth, H. B. Weber, G. Pensl, M. Rambach and L. Frey: Mater. Sci. Forum Vol. 556­557 (2007), p.367.

DOI: 10.4028/www.scientific.net/msf.556-557.367

Google Scholar

[12] S.Y. Ji, K. Eto, S. Yoshida, K. Kojima, Y. Ishida, S. Saito, H. Tsuchida and H. Okumura: Appl. Phys. Express Vol. 8 (2015), p.121302.

DOI: 10.7567/apex.8.121302

Google Scholar

[13] H. Matsuura, A. Takeshita, T. Imamura, K. Takano, K. Okuda, A. Hidaka, S.Y. Ji, K. Eto, K. Kojima, T. Kato, S. Yoshida and H. Okumura: Mater. Sci. Forum Vol. 924 (2018), p.188.

DOI: 10.4028/www.scientific.net/msf.924.188

Google Scholar

[14] H. Matsuura, A. Takeshita, T. Imamura, K. Takano, K. Okuda, A. Hidaka, S.Y. Ji, K. Eto, K. Kojima, T. Kato, S. Yoshida and H. Okumura: Applied Physics Express Vol. 11 (2018), p.101302.

DOI: 10.7567/apex.11.101302

Google Scholar

[15] H. Matsuura, R. Nishihata, A. Takeshita, T. Imamura, K. Takano, K. Okuda, A. Hidaka, S.Y. Ji, K. Eto, K. Kojima, T. Kato, S. Yoshida and H. Okumura: Mater. Sci. Forum Vol. 963 (2019), p.324.

DOI: 10.4028/www.scientific.net/msf.963.324

Google Scholar

[16] H. Matsuura, A. Takeshita, T. Imamura, K. Takano, K. Okuda, A. Hidaka, S.Y. Ji, K. Eto, K. Kojima, T. Kato, S. Yoshida and H. Okumura: Jpn. J. Appl. Phys. Vol. 58 (2019), p.098004.

DOI: 10.7567/1347-4065/ab3c2c

Google Scholar

[17] B.I. Shklovskii and A.L. Efros: Electronic Properties of Doped Semiconductors (Springer­ Verlag, Berlin, 1984).

Google Scholar

[18] D. Emin: Phil. Mag. Vol. 35 (1977), p.1189.

Google Scholar

[19] M. Grunewald, P. Thomas and D. Wurrtz: J. Phys. C Vol. 14 (1981), p.4083.

Google Scholar

[20] L.J. van der Pauw: Philips Res. Rep. Vol. 13 (1958), p.1.

Google Scholar

[21] N.F. Mott and E.A. Davis: Electronic Processes in Non­Crystalline Materials (Clarendon, Ox­ ford, 1979) 2nd ed.

Google Scholar

[22] H. Boettger and V. Bryksin: Hopping Conduction in Solids (Akademic­Verlag, Berlin, 1985).

Google Scholar

[23] R.A. Street: Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, 1991).

Google Scholar

[24] H. Matsuura, in: Determination Methods of Densities and Energy Levels of Impurities and De­ fects Affecting Majority­carrier Concentration in Next­generation Semiconductors, edited by H. Geelvinck and S. Reynst, volume 10 of Advances in Condensed Matter and Materials Research, chapter, 7, Nova Science Publishers Inc. (2011).

Google Scholar

[25] A. Koizumi, J. Suda and T. Kimoto: J. Appl. Phys. Vol. 106 (2009), p.013716.

Google Scholar

[26] S.M. Sze and K.K. Ng: Physics of Semiconductor Devices 3rd. (Wiley­Interscience, New Jersey, 2007).

Google Scholar