Wurtzite SiC Formation in Plastic Deformed 3C and 6H

Article Preview

Abstract:

Single side clamped 3C and 6H single crystal silicon carbide beams were elastic deformed using a special designed deformation stage in an electron microscope and subjected to high temperatures. The structural transitions occurring during the plastic relaxation process were recorded in situ in the electron microscope using reflection high energy electron diffraction in {110} azimuthal direction. For both polytypes, a polytype phase transition into the wurtzite silicon carbide polytype was observed independent on the surface polarity. The critical initial elastic deformation of the polytype phase transition into the wurtzite phase for the cubic silicon carbide polytype is larger compared to the 6H-SiC. This is due to the higher partial dislocation densities needed to transform the cubic modification into the wurtzite phase.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1004)

Pages:

243-248

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.A. Kalnin, F. Neubert, J. Pezoldt, Diam. Rel. Mater. 3 (1994) 346-352.

Google Scholar

[2] C. Cheng, R.J. Needs, V. Heine, J. Phys. C: Solid State Phys. 21 (1988) 1049-1063.

Google Scholar

[3] P. Krishna, R.C. Marshall, C.E. Ryan, J. Cryst. Growth 8 (1971) 129-131.

Google Scholar

[4] P. Krishna, R.C. Marshall, J. Cryst. Growth 11 (1977) 147-150.

Google Scholar

[5] W.F. Knippenberg, G. Verspui, Mater. Res. Bull. 4 (1969) S33-S44.

Google Scholar

[6] Y. Nakgawa, S. Takeuchi, A. Ishikawa, M. Imade, Y. Yoshimura, J. Cryst. Growth 371 (2013) 23-27.

Google Scholar

[7] R.F. Adamsky, K.M. Merz, Z. Kristallogr. 111 (1959) 350-361.

Google Scholar

[8] R.F. Adamsky, K.M. Merz, J. Amer. Chem. Soc. 81 (1959) 250-251.

Google Scholar

[9] J.A. Powell, J. Appl. Phys. 40 (1969) 4660-4661.

Google Scholar

[10] L. Patrick, D.R. Hamilton, W.J. Choyke, Phys. Rev. 143 (1966) 526-536.

Google Scholar

[11] J. He, B. Sun, Y. Sun, C. Wang. CrystEngComm 21 (2019) 4740-4746.

Google Scholar

[12] Y.-M. Hu, M.-H. Hon, Nippon Seramikkusu Kyokai Gakijutsu Rombushi (1991) 1175-1178.

Google Scholar

[13] J. Pezoldt, V. Cimalla, Th. Stauden, G. Ecke, G. Eichhorn, F. Scharmann, D. Schipanski, Diam. Rel. Mater. 6 (1997) 1311-1315.

DOI: 10.1016/s0925-9635(97)00087-3

Google Scholar

[14] S. Matsumoto, H. Suzuki, R. Ueda, Jpn. J. Appl. Phys. 11 (1972) 607-608.

Google Scholar

[15] M. Imade, A. Ishikawa, Y. Nakagawa, M. Yoshimura, Y. Kitaoka, T. Sasaki, Y. Mori, Mater. Sci. Forum 717-720 (2012) 65-68.

DOI: 10.4028/www.scientific.net/msf.717-720.65

Google Scholar

[16] M.A. Stan, M.O. Patton, J.D. Warner, J.W. Yang, P. Pirouz, Appl. Phys. Lett. 64 (1994) 2667-2669.

Google Scholar

[17] T. Kusumori, H. Muto, M.E. Brito, Appl. Phys. Lett. 84 (2004) 1272-1274.

Google Scholar

[18] V.V. Luchinin, Yu.M. Tairov, Sov. Tech. Phys. Lett. 10 (1984) 366-367.

Google Scholar

[19] T.F. Page, G.R. Sawyer, O.O. Adewoye, J.J. Wert, Proc. Br. Ceram. Soc. 26 (1978) 193-208.

Google Scholar

[20] V.F. Britun, G.S. Oleijnik, A.N. Pilyankevich, Ukr. Fiz. Zh. 33 (1988) 791-794.

Google Scholar

[21] M.L. Duval-Riviere, J. Vincens, Phil. Mag. 69 (1994) 451-470.

Google Scholar

[22] J.W. Yang, P. Pirouz, J. Mater. Res. 8 (1993) 2902-2907.

Google Scholar

[23] H. Idrissi, M. Lancin, J. Douin, G. Regula, P. Picaud, Mater. Sci. Forum 483-485 (2005) 299-302.

DOI: 10.4028/www.scientific.net/msf.483-485.299

Google Scholar

[24] B. Chen, J. Wang, Y. Zhu, X. Liao, C. Lu, Y.-W. Mai, S.P. Ringer, F. Ke, Y. Shen, Acta Mater. 80 (2014) 392-399.

DOI: 10.1016/j.actamat.2014.07.055

Google Scholar

[25] M. Matsumoto, H. Huang, H. Harada, K. Kakimoto, J. Yan, J. Phys. D: Appl. Phys. 50 (2017) 265303.

Google Scholar

[26] U. Messerschmidt, F. Apel, Krist. und Techn. 14 (1979) 1245-1248.

Google Scholar

[27] X.D. Han, Y.F. Zhang, X.Q. Liu, Z. Zhang, Y.J. Hao, X.Y. Guo, J. Appl. Phys. 98 (2005) 124307.

Google Scholar

[28] J.-P. Gauthier, B. Minh, Duc, P. Michel, J. Appl. Cryst. 10 (1977) 111-117.

Google Scholar

[29] F. Neubert, J. Pezoldt, Izv. LETI 322 (1982) 54-58.

Google Scholar

[30] H. Schulz, K.H. Thielmann, Solid State Commun. 32 (1979) 883-785.

Google Scholar

[31] H. Göttsche, Acta Cryst. 9 (1956) 179-181.

Google Scholar

[32] S. Shinozaki, K.R. Kinsman, Acta Met. 26 (1978) 769-776.

Google Scholar

[33] V. Cimalla, J. Pezoldt, O. Ambacher, J. Phys. D: Appl. Phys. 40 (2007) 6386–6434.

Google Scholar

[34] G.B. Olson, M. Cohen, Met. Trans. A 7 (1976) 1915-1923.

Google Scholar

[35] J. Pezoldt, A.A. Kalnin, Adv. Mater. Res. 324 (2011) 217-220.

Google Scholar

[36] J. Pezoldt, A.A. Kalnin, Mater. Sci. Forum924 (2017) 147-150.

Google Scholar