Resistivity Measurement of P+-Implanted 4H-SiC Samples Prepared at Different Implantation and Annealing Temperatures Using Terahertz Time-Domain Spectroscopic Ellipsometry

Article Preview

Abstract:

The resistivities of P+-implanted 4H-SiC samples, each prepared at different implantation and annealing temperatures, were measured using terahertz time-domain spectroscopic ellipsometry and compared with the results of the previously reported Raman spectra. The 4H-SiC samples of one group were implanted with P+ at 30 °C, 150 °C, 300 °C, and 500 °C, respectively, and annealed at 1600 °C. The resistivity was found to be approximately 8 mΩ·cm for the samples implanted at 30 and 150 °C and approximately 2 mΩ·cm for the remaining two samples. The 4H-SiC samples of the other group were implanted at 500 °C followed by annealing at 1200 °C, 1400 °C, 1600 °C, and 1800 °C, respectively. The resistivity was measured as 10 mΩ·cm for the sample annealed at 1200 °C and 3.0−1.8 mΩ·cm for the remaining three samples. These resistivity values are correlated with the Raman peak widths that reflect the lattice disorder.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1004)

Pages:

272-277

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Zhang, W. J. Weber, W. Jiang, C. M. Wang, V. Shutthanandan, and A. Hallén, J. Appl. Phys. 95 (2004) 4012.

Google Scholar

[2] I.-T. Bae, M. Ishimaru, Y. Hirotsu, S. Matsumura, and K. E. Sickafus, Nucl. Instr. Meth. B 206 (2003) 974.

Google Scholar

[3] K. Ishiji, S. Kawado, Y. Hirai, and S. Nagamachi, Mater. Sci. Forum 778-780 (2014) 449.

Google Scholar

[4] K. Narita, Y. Hijikata, H. Yaguchi, S. Yoshida and S. Nakashima, Jpn. J. Appl. Phys. 43 (2004) 5151.

Google Scholar

[5] K. Narita, Y. Hijikata, H. Yaguchi, S. Yoshida, J. Senzaki and S. Nakashima, Mater. Sci. Forum 457-460 (2004) 905.

DOI: 10.4028/www.scientific.net/msf.457-460.905

Google Scholar

[6] S. Yoshida, Y. Hijikata and H. Yaguchi, Physics and Technology of Silicon Carbide Devices, IntechOpen, 2012, Chapt. 1, pp.1-26.

Google Scholar

[7] T. Nagashima and M. Hangyo, Appl. Phys. Lett. 79 (2001) 3917.

Google Scholar

[8] T. Hofmann, C. M. Herzinger, J. L. Tedesco, D. K. Gaskill, J. A. Woollam, and M. Schubert, Thin Solid Films 519 (2011) 2593.

DOI: 10.1016/j.tsf.2010.11.069

Google Scholar

[9] K. Tachi, S. Asagami, T. Fujii, T. Araki, Y. Nanishi, T. Nagashima, T. Iwamoto, Y. Sato, N. Morita, R. Sugie, and S. Kamiyama, Phys. Stat. Solidi B 254 (2017) 1600767.

DOI: 10.1002/pssb.201600767

Google Scholar

[10] K. Yamada, K. Sato, T. Yagi, A. Ito, N. Sawaki, and T. Saso, Quantum Engineering for Functional Materials, Kodansya, 2004, pp.147-163. (in Japanese).

Google Scholar

[11] H. Harima, S. Nakashima, and T. Uemura, J. Appl. Phys. 78 (1995) (1996).

Google Scholar

[12] F. Schmid, M. Laube, G. Pensl, G. Wagner, and M. Maier, J. Appl. Phys. 91 (2002) 9182.

Google Scholar

[13] S. Nakashima, T. Mitani, J. Senzaki, H. Okumura, and T. Yamamoto, J. Appl. Phys. 97 (2005) 123507.

Google Scholar