[1]
T. Kimoto, Material Science and Device Physics in SiC Technology for High-Voltage Power Devices,, Jpn. J. Appl. Phys. 54 040103, (2015).
DOI: 10.7567/jjap.54.040103
Google Scholar
[2]
Z. Tian, N.R. Quick and A. Kar, Laser-Enhanced Diffusion of Nitrogen and Aluminum Dopants in Silicon Carbid,, Acta Materialia, Vol. 54, Issue 16, pp.4273-4283, (2006).
DOI: 10.1016/j.actamat.2006.05.020
Google Scholar
[3]
T. Troffer, M. Schandt, T. Frank et al, Doping of SiC by Implantation of Boron and Aluminum,, Phys. Stat. Sol. A, 162, 277, (1997).
DOI: 10.1002/1521-396x(199707)162:1<277::aid-pssa277>3.0.co;2-c
Google Scholar
[4]
M. Rambach, A.J. Bauer and H. Ryssel, Electrical and Topographical Characterization of Aluminum Implanted Layers in 4H-SiC,, Phys.Stat.Sol.(b) 245, No. 7, pp.1315-1326, (2008).
DOI: 10.1002/pssb.200743510
Google Scholar
[5]
N. D. Arora et al, Electron and Hole Mobilities in Silicon as a Function of Concentration and Temperature,, IEEE Transactions on Electron Devices, vol. ED-29, no. 2, p.292–295, (1982).
DOI: 10.1109/t-ed.1982.20698
Google Scholar
[6]
C. Canali et al., Electron and Hole Drift Velocity Measurement in Silicon and Their Empirical Relation to Electric Field and Temperature,, IEEE Transactions on Electron Devices, vol. ED-22, no. 11, p.1045–1047, (1975).
DOI: 10.1109/t-ed.1975.18267
Google Scholar
[7]
C. Lombardi et al., A Physically based Mobility Model for Numerical Simulation of Nonplanar Devices,, IEEE Transactions on Computer-Aided Design, vol. 7, no. 11,p.1164–1171, (1988).
DOI: 10.1109/43.9186
Google Scholar
[8]
J. Weisse et al., Aluminum Acceptor Activation and Charge Compensation in Implanted p-Type 4H-SiC,, AIP Advances 9, p.055308, (2019).
DOI: 10.1063/1.5096440
Google Scholar
[9]
J. Weisse et al., On the Origin of Charge Compensation in Aluminum-Implanted n-Type 4H-SiC by Analysis of Hall Effect Measurements,, Mat. Sci. F., 1662-9752, Vol.963, pp.433-436, (2018).
DOI: 10.4028/www.scientific.net/msf.963.433
Google Scholar
[10]
S. Potbhare et al, A Physical Model of High Temperature 4H-SiC MOSFETs,, IEEE, Transactions on Electron Devices 55, 2029, (2008).
DOI: 10.1109/ted.2008.926665
Google Scholar
[11]
S. Potbhare et al, Numerical and Experimental Characterization of 4H-Silicon Carbid Metal-Oxide-Semiconductor Field-Effect Transistors,, J. Appl. Phys., 100(4), 044515.1-044515.8, (2006).
DOI: 10.1063/1.2335967
Google Scholar
[12]
J. Wörle, Approachting the SiO2/SiC Interface: Novel Concepts for the Characterization of the Near Interface Region,, Doctoral Thesis, DOI 10.3929/ethz-b-000353158, (2019).
Google Scholar
[13]
V. Uhnevionak, Doctoral Thesis, Simulation and Modeling of Silicon Carbide Devices,, urn:nbn:de:bvb:29-opus4-61975, (2015).
Google Scholar
[14]
M. Hauck et al Communications Physics, An Adapted Method for Analyzing 4H Silicon Carbid Metal-Oxide Semiconductor Field-Effect Transistors,, Volume 2, Article number: 5, (2019).
DOI: 10.1038/s42005-018-0102-8
Google Scholar
[15]
D. K. Schroder, Semiconductor Material and Device Characterization,, Wiley, (2015).
Google Scholar
[16]
S. M. Sze and K. K. Ng, Physics of Semiconductor Devices,, Wiley, (2007).
Google Scholar
[17]
A. F. Basile and P. M. Mooney, Modeling of High-Frequency Capacitance-Voltage Characteristics to Quantify Trap Distributions near SiO2/SiC Interfaces,, Journal of Applied Physics 111, 094509, (2012).
DOI: 10.1063/1.4712431
Google Scholar
[18]
L. Zhao et al, Analyze Punch-through and Reach-trough Breakdown Voltage in N+PN+ and N+P+NN+ Sandwich Structures,, DOI 10.1109/piers.2017.8262041, Prog. Electromag. Res. Symp., Spring (PIERS), St Petersburg, (2017).
DOI: 10.1109/piers.2017.8262041
Google Scholar
[19]
M. Kocher et al, Determination of Compensation Ratios of Al-implanted 4H-SiC by TCADModelling of TLM Measurement,, Mat. Sci. F., Vol. 963, pp.445-448, (2019).
DOI: 10.4028/www.scientific.net/msf.963.445
Google Scholar
[20]
J. Weisse et al, Analysis of Compenstion Effects in Aluminum-Implanted 4H-SiC Devices,, Mat. Sci. F, Vol.924, pp.184-187, (2018).
Google Scholar