Evaluation of Hysteresis Response in Achiral Edges of Graphene Nanoribbons on Semi-Insulating SiC

Article Preview

Abstract:

Hysteresis response of epitaxially grown graphene nanoribbons devices on semi-insulating 4H-SiC in the armchair and zigzag directions is evaluated and studied. The influence of the orientation of fabrication and dimensions of graphene nanoribbons on the hysteresis effect reveals the metallic and semiconducting nature graphene nanoribbons. The hysteresis response of armchair based graphene nanoribbon side gate and top gated devices implies the influence of gate field electric strength and the contribution of surface traps, adsorbents, and initial defects on graphene as the primary sources of hysteresis. Additionally, passivation with AlOx and top gate modulation decreased the hysteresis and improved the current-voltage characteristics.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science. 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[2] F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5 (2010) 487-496.

Google Scholar

[3] X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, H. Dai, Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors, Phys. Rev. Lett. 100 (2008) 206803.

DOI: 10.1103/physrevlett.100.206803

Google Scholar

[4] A. Kimouche, M. M. Ervasti, R. Drost, S. Halonen, A. Harju, P. M. Joensuu, J. Sainio, P. Liljeroth, Ultra-narrow metallic armchair graphene nanoribbons, Nat. Commun. 6 (2015) 10177.

DOI: 10.1038/ncomms10177

Google Scholar

[5] Y.-W. Son, M. L. Cohen, S. G. Louie, Half-metallic graphene nanoribbons, Nature. 444 (2006) 347-349.

DOI: 10.1038/nature05180

Google Scholar

[6] J. Liu, X. Feng, Synthetic Tailoring of graphene nanostructures with zigzag-edged topologies: Progress and perspectives, Angew. Chem. Int. Ed. 59 (2020) 23386-23401.

DOI: 10.1002/anie.202008838

Google Scholar

[7] H. Wang, H. S. Wang, C. Ma, L. Chen, C. Jiang, C. Chen, X. Xie, A.-P. Li, X. Wang, Graphene nanoribbons for quantum electronics, Nat. Rev. Phys. 3 (2021) 791-802.

DOI: 10.1038/s42254-021-00370-x

Google Scholar

[8] Z. Geng, B. Hähnlein, R. Granzner, M. Auge, A. A. Lebedev, V. Y. Davydov, M. Kittler, J. Pezoldt, F. Schwierz, Graphene nanoribbons for electronic devices, Ann. Phys. 529 (2017) 1700033.

DOI: 10.1002/andp.201700033

Google Scholar

[9] Z. Chen, Y.-M. Lin, M. J. Rooks, P. Avouris, Graphene nano-ribbon electronics, Phys. E: Low-Dimens. Syst. Nanostructures. 40 (2007) 228-232.

DOI: 10.1016/j.physe.2007.06.020

Google Scholar

[10] M. Evaldsson, I. V. Zozoulenko, H. Xu, T. Heinzel, Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons, Phys. Rev. B. 78 (2008) 161407.

DOI: 10.1103/physrevb.78.161407

Google Scholar

[11] F. Cervantes-Sodi, G. Csányi, S. Piscanec, A. C. Ferrari, Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties, Phys. Rev. B. 77 (2008) 165427.

DOI: 10.1103/physrevb.77.165427

Google Scholar

[12] A. Tries, N. Richter, Z. Chen, A. Narita, K. Mullen, H. I. Wang, M. Bonn, M. Klaui, Hysteresis in graphene nanoribbon field-effect devices, Phys. Chem. Chem. Phys. 22 (2020) 5667-5672.

DOI: 10.1039/d0cp00298d

Google Scholar

[13] Z. M. Liao, B. H. Han, Y. B. Zhou, D. P. Yu, Hysteresis reversion in graphene field-effect transistors, J. Chem. Phys. 133 (2010) 044703.

DOI: 10.1063/1.3460798

Google Scholar

[14] Y.-X. Lu, C.-T. Lin, M.-H. Tsai, K.-C. Lin, Review-Hysteresis in carbon nano-structure field effect transistor, Micromachines. 13 (2022) 509.

DOI: 10.3390/mi13040509

Google Scholar

[15] H. Wang, Y. Wu, C. Cong, J. Shang, T. Yu, Hysteresis of electronic transport in graphene transistors, ACS Nano. 4 (2010) 7221-7228.

DOI: 10.1021/nn101950n

Google Scholar

[16] I. Eliseyev, V. Y. Davydov, A. Smirnov, M. Nestoklon, P. Dementev, S. Lebedev, A. Lebedev, A. Zubov, S. Mathew, J. Pezoldt, Optical estimation of the carrier concentration and the value of strain in monolayer graphene grown on 4H-SiC, Semiconductors. 53 (2019)1904-1909.

DOI: 10.1134/s1063782619140057

Google Scholar

[17] R. Göckeritz, D. Schmidt, M. Beleites, G. Seifert, S. Krischok, M. Himmerlich, J. Pezoldt, High temperature graphene formation on capped and uncapped SiC, Mater. Sci. Forum. 679 (2011) 785-788.

DOI: 10.4028/www.scientific.net/msf.679-680.785

Google Scholar

[18] B. Hähnlein, S. Lebedev, I. Eliseyev, A. Smirnov, V. Davydov, A. Zubov, A. Lebedev, J. Pezoldt, Investigation of epitaxial graphene via Raman spectroscopy: Origins of phonon mode asymmetries and line width deviations, Carbon. 170 (2020) 666-676.

DOI: 10.1016/j.carbon.2020.07.016

Google Scholar

[19] S. Mathew, S. P. Lebedev, A. A. Lebedev, B. Hähnlein, J. Stauffenberg, K. Udas, H. O. Jacobs, E. Manske, J. Pezoldt, Nanoscale surface morphology modulation of graphene–i-SiC heterostructures, Mater. Today Proc. 53 (2022) 289-292.

DOI: 10.1016/j.matpr.2021.06.427

Google Scholar

[20] J. Penuelas, A. Ouerghi, D. Lucot, C. David, J. Gierak, H. Estrade-Szwarckopf, C. Andreazza-Vignolle, Surface morphology and characterization of thin graphene films on SiC vicinal substrate, Phys. Rev. B. 79 (2009) 033408.

DOI: 10.1103/physrevb.79.033408

Google Scholar

[21] W. Norimatsu, M. Kusunoki, Formation process of graphene on SiC (0001), Phys. E: Low-Dimens. Syst. Nanostructures. 42 (4) (2010) 691-694.

DOI: 10.1016/j.physe.2009.11.151

Google Scholar

[22] H. Kuramochi, S. Odaka, K. Morita, S. Tanaka, H. Miyazaki, M. Lee, S.-L. Li, H. Hiura, K. Tsukagoshi, Role of atomic terraces and steps in the electron transport properties of epitaxial graphene grown on SiC, AIP Adv. 2 (2012) 012115.

DOI: 10.1063/1.3679400

Google Scholar

[23] J. Robinson, X. Weng, K. Trumbull, R. Cavalero, M. Wetherington, E. Frantz, M. LaBella, Z. Hughes, M. Fanton, D. Snyder, Nucleation of epitaxial graphene on SiC (0001), ACS Nano. 4 (2010) 153-158.

DOI: 10.1021/nn901248j

Google Scholar

[24] C. Cho, Y. Gon Lee, U. Jung, C. Goo Kang, S. Lim, H. Jun Hwang, H. Choi, B. Hun Lee, Correlation between the hysteresis and the initial defect density of graphene, Appl. Phys. Lett. 103 (2013) 083110.

DOI: 10.1063/1.4818770

Google Scholar

[25] B. Hähnlein, B. Händel, J. Pezoldt, H. Töpfer, R. Granzner, F. Schwierz, Side-gate graphene field-effect transistors with high transconductance, Appl. Phys. Lett. 101 (2012) 093504.

DOI: 10.1063/1.4748112

Google Scholar

[26] B. Hähnlein, B. Händel, F. Schwierz and J. Pezoldt, Properties of graphene side gate transistors, Mater. Sci. Forum. 740 (2013) 1028-103.

DOI: 10.4028/www.scientific.net/msf.740-742.1028

Google Scholar

[27] X. Li, X. Wu, M. Sprinkle, F. Ming, M. Ruan, Y. Hu, C. Berger, W. A. de Heer, Top‐and side‐gated epitaxial graphene field effect transistors, Phys. Status Solidi. 207 (2010) 286-290.

DOI: 10.1002/pssa.200982453

Google Scholar

[28] Y. G. Lee, C. G. Kang, C. Cho, Y. Kim, H. J. Hwang, B. H. Lee, Quantitative analysis of hysteretic reactions at the interface of graphene and SiO2 using the short pulse I–V method, Carbon. 60 (2013) 453-460.

DOI: 10.1016/j.carbon.2013.04.060

Google Scholar

[29] C. G. Kang, Y. G. Lee, S. K. Lee, E. Park, C. Cho, S. K. Lim, H. J. Hwang, B. H. Lee, Mechanism of the effects of low temperature Al2O3 passivation on graphene field effect transistors, Carbon. 53 (2013) 182-187.

DOI: 10.1016/j.carbon.2012.10.046

Google Scholar