Light Extraction from 4H Silicon Carbide by Nanostructuring the Surface with High Temperature Annealing

Article Preview

Abstract:

Nanostructuring of the surface occurs after annealing at high temperature of 4H-SiC samples. The surface morphology becomes needle-shaped like black silicon. The roughness of the surface also increases due to annealing and a slight etching of nanostructured zones occurs with an accentuated phenomenon at the boundaries. Electroluminescence is obtained by applied forward bias on fabricated PIN diode structures with localized nanostructurated windows in surface. Light intensity seems to be more sensitive to the initial orientation of the substrate and less to the annealing temperature in the 1500°C-1700°C range.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1089)

Pages:

37-44

Citation:

Online since:

May 2023

Export:

Share:

Citation:

* - Corresponding Author

[1] X. She, A. Q. Huang, Ó. Lucía, and B. Ozpineci, Review of Silicon Carbide Power Devices and Their Applications, IEEE Transactions on Industrial Electronics. 64 (2017) 8193‑8205.

DOI: 10.1109/tie.2017.2652401

Google Scholar

[2] H. Ou, Y. Ou, A. Argyraki, S. Schimmel, M. Kaiser, P. Wellmann, M.K. Linnarsson, V. Jokubavicius, J. Sun, R. Liljedahl and M. Syväjärvi, Advances in wide bandgap SiC for optoelectronics. Eur. Phys. J. B. 87 (2014) 58.

DOI: 10.1140/epjb/e2014-41100-0

Google Scholar

[3] S. Kamiyama, T. Maeda, Y. Nakamura, M. Iwaya, H. Amano, and I. Akasaki, Extremely high quantum efficiency of donor-acceptor-pair emission in N-and-B-doped 6H-SiC, J. Appl. Phys. 99 (2006) 093108.

DOI: 10.1063/1.2195883

Google Scholar

[4] M. Widmann, M. Niethammer, D. Y. Fedyanin, I. A. Khramtsov, T. Rendler, I. D. Booker, J. Ul Hassan, N. Morioka, Y. C. Chen, I. G. Ivanov, N. Tien Son, T. Ohshima, M. Bockstedte, A. Gali, C. Bonato, S. Y. Lee and J. Wrachtrup, Electrical Charge State Manipulation of Single Silicon Vacancies in a Silicon Carbide Quantum Optoelectronic Device, Nano Lett. 19 (2019) 7173‑7180.

DOI: 10.1021/acs.nanolett.9b02774

Google Scholar

[5] S. A. Zargaleh, S. Hameau, B. Eble, F. Margaillan, H. J. von Bardeleben, J. L. Cantin and W. Gao, Nitrogen vacancy center in cubic silicon carbide: A promising qubit in the 1.5μm spectral range for photonic quantum networks, Physical Review B. 98 (2018) 165203.

DOI: 10.1103/physrevb.98.165203

Google Scholar

[6] Y. Ou, V. Jokubavicius, M. Kaiser, P. Wellmann, M. K. Linnarsson, R. Yakimova, M. Syväjärvi, and H. Ou, Fabrication of Broadband Antireflective Sub-Wavelength Structures on Fluorescent SiC, Materials Science Forum, 740 (2013) 1024‑1027, 2013.

DOI: 10.4028/www.scientific.net/msf.740-742.1024

Google Scholar

[7] Y. Ou, X. Zhu, V. Jokubavicius, R. Yakimova, N. A. Mortensen, M. Syväjärvi, S. Xiao and H. Ou, Broadband Antireflection and Light Extraction Enhancement in Fluorescent SiC with Nanodome Structures, Sci Rep, 4 (2014) 4662.

DOI: 10.1038/srep04662

Google Scholar

[8] A. Henry and E. Janzen, Epitaxial Growth and Characterization of 4H-SiC, Journal of the Japanese Association for Crystal Growth. 40 (2013) 42‑48.

Google Scholar

[9] E. Oliviero, M. Lazar, H. Vang, C. Dubois, P. Cremillieu, J.L. Leclercq, J. Dazord, D. Planson, Use of Graphite Cap to Reduce Unwanted Post-Implantation Annealing Effects in SiC, Materials Science Forum. 556‑557 (2007) 611‑614.

DOI: 10.4028/www.scientific.net/msf.556-557.611

Google Scholar

[10] C. Berger, D. Deniz, J. Gigliotti, J. Palmer, J. Hankinson, Y. Hu, J.P. Turmaud, R. Puybaret, Epitaxial Graphene on SiC: 2D Sheets, Selective Growth, and Nanoribbons, in: N. Motta, F. Iacopi, C. Coletti (Eds), Growing Graphene on Semiconductors, Jenny Stanford Publishing, 2017, p.181‑204.

DOI: 10.1201/9781315186153-6

Google Scholar

[11] X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, Black silicon: fabrication methods, properties and solar energy applications, Energy Environ. Sci. 7 (2014) 3223‑3263.

DOI: 10.1039/c4ee01152j

Google Scholar