Electroluminescence Spectra of a Gate Switched MOSFET at Cryogenic and Room Temperatures Agree with Ab Initio Calculations of 4H-SiC/SiO2-Interface Defects

Article Preview

Abstract:

To reach the theoretical performance limit of 4HSiCMOSFETs the SiC/SiO2interfacedefects along the inversion channel need to be fully identified in order to be avoided. We employa measurement technique that allows to observe energetically resolved trap states at the SiC/SiO2 interface by measuring the electrolumiscence of a gate pulsed MOSFET. The spectra are recorded at room and cryogenic temperatures with a spectrometer and two different amplitudes of the gate pulse. Comparison of the results to literature allows for identification of the L1 line of the D1 center with an energy of 2.9 eV and suggests donoracceptorpair recombination or Z1/2 to be responsible for the emission around 2.5 eV. Ionization energies of PbC and related vacancy centers determined via ab initio calculations show similar results as the experimental data and provide a possible classification of the trap level around 1.8 eV.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] V. Afanasev, M. Bassler, G. Pensl, and M. Schulz, "Intrinsic SiC/SiO2 interface states," physica status solidi (a), vol. 162, no. 1, p.321–337, 1997.

DOI: 10.1002/1521-396x(199707)162:1<321::aid-pssa321>3.0.co;2-f

Google Scholar

[2] G. Rescher, G. Pobegen, T. Aichinger, and T. Grasser, "On the subthreshold drain current sweep hysteresis of 4H-SiC nMOSFETs," p.10–8, 2016.

DOI: 10.1109/iedm.2016.7838392

Google Scholar

[3] R. Stahlbush and P. Macfarlane, "Light emission from interface traps and bulk defects in SiC MOSFETs," Journal of electronic materials, vol. 30, no. 3, p.188–195, 2001.

DOI: 10.1007/s11664-001-0014-2

Google Scholar

[4] M. W. Feil, H. Reisinger, A. Kabakow, T. Aichinger, W. Gustin, and T. Grasser, "Optical emission correlated to bias temperature instability in SiC MOSFETs," International Reliability Physics Symposium, pp. 3B–1, 2022.

DOI: 10.1109/irps48227.2022.9764584

Google Scholar

[5] M. W. Feil, H. Reisinger, A. Kabakow, T. Aichinger, C. Schleich, A. Vasilev, D. Waldhör, M. Waltl, W. Gustin, and T. Grasser, "Electrically stimulated optical spectroscopy of interface defects in wide-bandgap field-effect transistors," manuscript under review, 2022.

DOI: 10.1038/s44172-023-00053-8

Google Scholar

[6] P. Macfarlane and R. Stahlbush, "Characterization of light emission from 4H- and 6H-SiC MOSFETs," MRS Online Proceedings Library (OPL), vol. 640, 2000.

DOI: 10.1557/proc-640-h4.9

Google Scholar

[7] J. Cottom, G. Gruber, G. Pobegen, T. Aichinger, and A. Shluger, "Recombination defects at the 4H-SiC/SiO2 interface investigated with electrically detected magnetic resonance and ab initio calculations," Journal of Applied Physics, vol. 124, no. 4, p.045302, 2018.

DOI: 10.1063/1.5024608

Google Scholar

[8] F. Devynck, F. Giustino, P. Broqvist, and A. Pasquarello, "Structural and electronic properties of an abrupt 4H-SiC (0001)/ SiO2 interface model: Classical molecular dynamics simulations and density functional calculations," Physical Review B, vol. 76, no. 7, p.075351, 2007.

DOI: 10.1063/1.2729890

Google Scholar

[9] M. Bockstedte, A. Mattausch, and O. Pankratov, "Ab initio study of the migration of intrinsic defects in 3C-SiC," Physical Review B, vol. 68, no. 20, p.205201, 2003.

DOI: 10.1103/physrevb.68.205201

Google Scholar

[10] M. Bockstedte, F. Schütz, T. Garratt, V. Ivády, and A. Gali, "Ab initio description of highly correlated states in defects for realizing quantum bits," npj Quantum Materials, vol. 3, no. 1, p.1–6, 2018.

DOI: 10.1038/s41535-018-0103-6

Google Scholar

[11] J. Bourgoin and M. Lannoo, "Optical properties," in Point Defects in Semiconductors II, p.88– 121, Springer, 1983.

DOI: 10.1007/978-3-642-81832-5_4

Google Scholar

[12] M. Ahoujja, H. Crocket, M. Scott, Y. Yeo, and R. Hengehold, "Photoluminescence characterization of defects introduced in 4H-SiC during high energy proton irradiation and their annealing behavior," MRS Online Proceedings Library (OPL), vol. 815, 2004.

DOI: 10.1557/proc-815-j5.21

Google Scholar

[13] T. Egilsson, J. Bergman, I. Ivanov, A. Henry, and E. Janzén, "Properties of the D1 bound exciton in 4H- SiC," Physical Review B, vol. 59, no. 3, p.1956, 1999.

DOI: 10.1016/s0921-4526(99)00602-x

Google Scholar

[14] A. Fissel, W. Richter, J. Furthmüller, and F. Bechstedt, "On the nature of the D1-defect center in SiC: A photoluminescence study of layers grown by solid-source molecular-beam epitaxy," Applied Physics Letters, vol. 78, no. 17, p.2512–2514, 2001.

DOI: 10.1063/1.1367883

Google Scholar

[15] C. Haberstroh, R. Helbig, and R. Stein, "Some new features of the photoluminescence of SiC (6H), SiC (4H), and SiC (15R)," Journal of applied physics, vol. 76, no. 1, p.509–513, 1994.

DOI: 10.1063/1.357103

Google Scholar

[16] M. Ikeda, H. Matsunami, and T. Tanaka, "Site effect on the impurity levels in 4H, 6H, and 15R SiC," Physical Review B, vol. 22, no. 6, p.2842, 1980.

Google Scholar

[17] M. Anikin, A. Lebedev, N. Poletaev, A. Strel'Chuk, A. Syrkin, and V. Chelnokov, "Deep centers and blue-green electroluminescence in 4H-SiC," Semiconductors, vol. 28, no. 3, p.288–291, 1994.

Google Scholar

[18] A. Galeckas, J. Linnros, and M. Lindstedt, "Characterization of carrier lifetime and diffusivity in 4H-SiC using time-resolved imaging spectroscopy of electroluminescence," Materials Science and Engineering: B, vol. 102, no. 1-3, p.304–307, 2003.

DOI: 10.1016/s0921-5107(02)00728-6

Google Scholar

[19] N. Kuznetsov and A. Zubrilov, "Deep centers and electroluminescence in 4H-SiC diodes with a p-type base region," Materials Science and Engineering: B, vol. 29, no. 1-3, p.181–184, 1995.

DOI: 10.1016/0921-5107(94)04035-3

Google Scholar

[20] C. Li, H. Luo, C. Li, W. Li, H. Yang, and X. He, "Online junction temperature extraction of SiC power MOSFETs with temperature sensitive optic parameter (TSOP) approach," IEEE Transactions on Power Electronics, vol. 34, no. 10, p.10143–10152, 2019.

DOI: 10.1109/tpel.2018.2890303

Google Scholar

[21] T. Stiasny and R. Helbig, "Thermoluminescence and related electronic processes of 4H/6H-SiC," physica status solidi (a), vol. 162, no. 1, p.239–249, 1997.

DOI: 10.1002/1521-396x(199707)162:1<239::aid-pssa239>3.0.co;2-k

Google Scholar

[22] J. Winkler, J. Homoth, and I. Kallfass, "Electroluminescence-based junction temperature measurement approach for SiC power MOSFETs," IEEE Transactions on Power Electronics, vol. 35, no. 3, p.2990–2998, 2019.

DOI: 10.1109/tpel.2019.2929426

Google Scholar

[23] S. Ostapenko, Y. M. Suleimanov, I. Tarasov, S. Lulu, and S. Saddow, "Thermally stimulated luminescence in full-size 4H-SiC wafers," Journal of Physics: Condensed Matter, vol. 14, no. 48, p.13381, 2002.

DOI: 10.1088/0953-8984/14/48/392

Google Scholar

[24] T. Kimoto, "Material science and device physics in SiC technology for high-voltage power devices," Japanese Journal of Applied Physics, vol. 54, no. 4, p.040103, 2015.

DOI: 10.7567/jjap.54.040103

Google Scholar

[25] N. T. Son and I. G. Ivanov, "Charge state control of the silicon vacancy and divacancy in silicon carbide," Journal of Applied Physics, vol. 129, no. 21, p.215702, 2021.

DOI: 10.1063/5.0052131

Google Scholar

[26] R. Hall, "Recombination processes in semiconductors," Proceedings of the IEE-Part B: Electronic and Communication Engineering, vol. 106, no. 17S, p.923–931, 1959.

DOI: 10.1049/pi-b-2.1959.0171

Google Scholar

[27] S. Bishop, C. Reynolds Jr, J. Molstad, F. Stevie, D. Barnhardt, and R. Davis, "On the origin of aluminum-related cathodoluminescence emissions from sublimation grown 4H-SiC (1120)," Applied surface science, vol. 255, no. 13-14, p.6535–6539, 2009.

DOI: 10.1016/j.apsusc.2009.02.036

Google Scholar

[28] L. Storasta, F. Carlsson, S. Sridhara, J. Bergman, A. Henry, T. Egilsson, A. Hallén, and E. Janzén, "Pseudodonor nature of the D1 defect in 4H-SiC," Applied Physics Letters, vol. 78, no. 1, p.46–48, 2001.

DOI: 10.1063/1.1334907

Google Scholar

[29] N. Korsunska, I. Tarasov, V. Kushnirenko, and S. Ostapenko, "High-temperature photoluminescence spectroscopy in p-type SiC," Semiconductor science and technology, vol. 19, no. 7, p.833, 2004.

DOI: 10.1088/0268-1242/19/7/009

Google Scholar

[30] Y. P. Varshni, "Temperature dependence of the energy gap in semiconductors," physica, vol. 34, no. 1, p.149–154, 1967.

DOI: 10.1016/0031-8914(67)90062-6

Google Scholar

[31] H. J. von Bardeleben, J. Cantin, Y. Shishkin, R. P. Devaty, and W. J. Choyke, "Microscopic structure and electrical activity of 4H-SiC/SiO2 interface defects: An EPR study of oxidized porous SiC," vol. 457, p.1457–1462, 2004.

DOI: 10.4028/www.scientific.net/msf.457-460.1457

Google Scholar

[32] A. Lebedev, "Deep level centers in silicon carbide: A review," Semiconductors, vol. 33, no. 2, p.107–130, 1999.

DOI: 10.1134/1.1187657

Google Scholar