SiC MOSFETs Biased C-V Curves: A Temperature Investigation

Article Preview

Abstract:

In this paper, SiC MOSFETs capacitance is monitored when a DC bias is applied between Drain and Source. The arising capacitance exhibits a sharp peak in the inversion region which is related to the SiC/SiO2 interface traps properties. Temperature effects on such peak are investigated using both experimental and numerical results. The peak shifts toward lower Gate voltage as temperature increases, in agreement with the threshold voltage reduction at higher temperature.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] B. J. Baliga, Fundamentals of power semiconductor devices, Springer Science & Business Media, (2010).

Google Scholar

[2] C. Raynaud, et al., Comparison of trapping–detrapping properties of mobile charge in alkali contaminated metal‐oxide‐silicon carbide structures, Applied physics letters 66, no. 18: 2340-2342, (1995).

DOI: 10.1063/1.113976

Google Scholar

[3] D. Peters et al., Investigation of threshold voltage stability of SiC MOSFETs, ISPSD, (2018).

Google Scholar

[4] V. V. Afanasev, et al., Intrinsic SiC/SiO2 interface states, physica status solidi (a) 162, no. 1: 321-337, (1997).

DOI: 10.1002/1521-396x(199707)162:1<321::aid-pssa321>3.0.co;2-f

Google Scholar

[5] Schroder, D.K. Semiconductor Material and Device Characterization, 3rd ed.; Wiley: Hoboken, NJ, USA, (2006)

Google Scholar

[6] Hu, Chenming Calvin. "Modern Semiconductor Devices for Integrated Circuits." Part I: Electrons and holes in a semiconductor (2011).

Google Scholar

[7] L. Maresca et al. Influence of the SiC/SiO2 SiC MOSFET Interface Traps Distribution on C–V Measurements Evaluated by TCAD Simulations. IEEE Journal of Emerging and Selected Topics in Power Electronics 9.2 (2019): 2171-2179

DOI: 10.1109/jestpe.2019.2940143

Google Scholar

[8] Matacena, Ilaria, et al. "Experimental Analysis of CV and IV Curves Hysteresis in SiC MOSFETs." Materials Science Forum. Vol. 1062. Trans Tech Publications Ltd, 2022.

Google Scholar

[9] Matacena, Ilaria, et al. "SiC MOSFET CV Curves Analysis with Floating Drain Configuration." Materials Science Forum. Vol. 1062. Trans Tech Publications Ltd, 2022.

DOI: 10.4028/p-96q66n

Google Scholar

[10] Matacena, Ilaria, et al. "Evaluation of Interface Traps Type, Energy Level and Density of SiC MOSFETs by Means of CV Curves TCAD Simulations." Materials Science Forum. Vol. 1004. Trans Tech Publications Ltd, 2020.

DOI: 10.4028/www.scientific.net/msf.1004.608

Google Scholar

[11] I. Matacena, L. Maresca, M. Riccio, A. Irace, G. Breglio, S. Daliento, & A. Castellazzi, (2022). SiC MOSFET CV Characteristics with Positive Biased Drain. In Materials Science Forum (Vol. 1062, pp.653-657). Trans Tech Publications Ltd.

DOI: 10.4028/p-2tyqfr

Google Scholar

[12] Wei, Jiaxing, et al. "Interfacial damage extraction method for SiC power MOSFETs based on CV characteristics." 2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD). IEEE, 2017.

DOI: 10.23919/ispsd.2017.7988992

Google Scholar

[13] Tsuji, Katsuhiro, et al. "Measurement of MOSFET CV curve variation using CBCM method." 2009 IEEE International Conference on Microelectronic Test Structures. IEEE, 2009.

DOI: 10.1109/icmts.2009.4814615

Google Scholar

[14] Jouha, Wadia, et al. "Physical study of SiC power MOSFETs towards HTRB stress based on CV characteristics." IEEE Transactions on Device and Materials Reliability 20.3 (2020): 506-511.

DOI: 10.1109/tdmr.2020.2999029

Google Scholar

[15] G. Romano, M. Riccio, L. Maresca, G. Breglio, A. Irace, A. Fayyaz, and A. Castellazzi, (2016, June). Influence of design parameters on the short-circuit ruggedness of SiC power MOSFETs. In Power Semiconductor Devices and ICs (ISPSD), 2016 28th International Symposium on (pp.47-50). IEEE.

DOI: 10.1109/ispsd.2016.7520774

Google Scholar

[16] Maresca, Luca, et al. "TCAD model calibration for the SiC/SiO 2 interface trap distribution of a planar SiC MOSFET." 2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia). IEEE, 2020.

DOI: 10.1109/wipdaasia49671.2020.9360298

Google Scholar

[17] N. D. Arora, J. R. Hauser, and D. J. Roulston, "Electron and Hole Mobilities in Silicon as a Function of Concentration and Temperature," IEEE Transactions on Electron Devices, vol. ED-29, no. 2, p.292–295, 1982.

DOI: 10.1109/t-ed.1982.20698

Google Scholar

[18] J. G. Fossum, and D. S. Lee. "A physical model for the dependence of carrier lifetime on doping density in nondegenerate silicon." Solid-State Electronics 25, no. 8 (1982): 741-747.

DOI: 10.1016/0038-1101(82)90203-9

Google Scholar