[1]
G. Soelkner, "Ensuring the reliability of power electronic devices with regard to terrestrial cosmic radiation," Microelectron. Reliab., vol. 58, p.39–50, Mar. 2016.
DOI: 10.1016/j.microrel.2015.12.019
Google Scholar
[2]
D. R. Ball et al., "Effects of Breakdown Voltage on Single-Event Burnout Tolerance of High-Voltage SiC Power MOSFETs," IEEE Trans. Nucl. Sci., vol. 68, no. 7, p.1430–1435, Jul. 2021.
DOI: 10.1109/TNS.2021.3079846
Google Scholar
[3]
A. Akturk et al., "Predicting Cosmic Ray-Induced Failures in Silicon Carbide Power Devices," IEEE Trans. Nucl. Sci., vol. 66, no. 7, p.1828–1832, 2019.
DOI: 10.1109/TNS.2019.2919334
Google Scholar
[4]
H. Kono, T. Ohashi, T. Noda, and K. Sano, "Impact of Device Structure on Neutron-Induced Single-Event Effect in SiC MOSFETs," Mater. Sci. Forum, vol. 963, p.738–741, Jul. 2019.
DOI: 10.4028/www.scientific.net/MSF.963.738
Google Scholar
[5]
C. Martinella et al., "Impact of Terrestrial Neutrons on the Reliability of SiC VD-MOSFET Technologies," IEEE Trans. Nucl. Sci., vol. 68, no. 5, p.634–641, May 2021.
DOI: 10.1109/TNS.2021.3065122
Google Scholar
[6]
A. Akturk, R. Wilkins, and J. McGarrity, "Terrestrial neutron induced failures in commercial SiC power MOSFETs at 27C and 150C," in IEEE Radiation Effects Data Workshop, 2015, vol. 2015-Novem, p.1–5.
DOI: 10.1109/REDW.2015.7336737
Google Scholar
[7]
T. Oda, T. Arai, T. Furukawa, M. Shiraishi, and Y. Sasajima, "Electric-Field-Dependence Mechanism for Cosmic Ray Failure in Power Semiconductor Devices," IEEE Trans. Electron Devices, vol. 68, no. 7, p.3505–3512, 2021.
DOI: 10.1109/TED.2021.3077208
Google Scholar
[8]
D. J. Lichtenwalner, D. A. Gajewski, S. H. Ryu, B. Hull, S. Allen, and J. W. Palmour, "Gate Bias Effects on SiC MOSFET Terrestrial-Neutron Single-Event Burnout," Mater. Sci. Forum, vol. 1062, p.463–467, May 2022.
DOI: 10.4028/p-4b1mb3
Google Scholar
[9]
M. Ciappa and M. Pocaterra, "Characterization of the onset of carrier multiplication in power devices by a collimated radioactive alpha source," Microelectron. Reliab., vol. 100–101, Sep. 2019.
DOI: 10.1016/j.microrel.2019.06.035
Google Scholar
[10]
M. Ciappa and M. Pocaterra, "Measurement of the Pre-Breakdown Characteristics in Silicon Carbide Power Devices by the Use of Radioactive Gamma Sources," 2020.
DOI: 10.1109/IRPS45951.2020.9128885
Google Scholar
[11]
M. Ciappa and M. Pocaterra, "On the use of Po210and Am241collimated alpha sources for the characterization of the onset of carrier multiplication in power devices," Proc. Int. Symp. Phys. Fail. Anal. Integr. Circuits, IPFA, vol. 2020-July, 2020.
DOI: 10.1109/IPFA49335.2020.9260952
Google Scholar
[12]
M. Ciappa and M. Pocaterra, "On the use of soft gamma radiation to characterize the pre-breakdown carrier multiplication in SiC power MOSFETs and its correlation to the TCR failure rate as measured by neutron irradiation," Microelectron. Reliab., vol. 114, no. October, p.113838, 2020.
DOI: 10.1016/j.microrel.2020.113838
Google Scholar
[13]
M. Ciappa and M. Pocaterra, "Assessing the pre-breakdown carriers' multiplication in SiC power MOSFETs by soft gamma radiation and its correlation to the Terrestrial Cosmic Rays failure rate data as mesured by neutron irradiation," in J021 IEEE International Reliability Physics Symposium (IRPS) | 978-1-7281-6893-7/21/$31.00 ©2021 IEEE | DOI: 10.1109/IRPS46558.2021.9405205, 2021, vol. 53, no. 9, p.1689–1699.
DOI: 10.1109/irps46558.2021.9405205
Google Scholar
[14]
D. J. Lichtenwalner et al., "Reliability studies of SiC vertical power MOSFETs," in IEEE International Reliability Physics Symposium Proceedings, 2018, vol. 2018-March, pp. 2B.21-2B.26.
DOI: 10.1109/IRPS.2018.8353544
Google Scholar
[15]
M. Pocaterra and M. Ciappa, "TCAD investigation of the transport of carriers deposited by alpha particles in silicon carbide power Schottky devices," Microelectron. Reliab., vol. 126, p.114317, Nov. 2021.
DOI: 10.1016/j.microrel.2021.114317
Google Scholar
[16]
M. Pocaterra and M. Ciappa, "Experimental setup to monitor non-destructive single events triggered by ionizing radiation in power devices," Microelectron. Reliab., vol. 114, no. July, p.113755, 2020.
DOI: 10.1016/j.microrel.2020.113755
Google Scholar
[17]
Synopsys, "Sentaurus Device User," no. June, p.2009, 2019.
Google Scholar
[18]
S. L. Miller, "Avalanche Breakdown in Germanium," Phys. Rev., vol. 99, no. 4, p.1234–1241, Aug. 1955.
DOI: 10.1103/PhysRev.99.1234
Google Scholar
[19]
T. Hatakeyama, "Measurements of impact ionization coefficients of electrons and holes in 4H-SiC and their application to device simulation," Phys. Status Solidi Appl. Mater. Sci., vol. 206, no. 10, p.2284–2294, 2009.
DOI: 10.1002/pssa.200925213
Google Scholar
[20]
L. Fursin and P. Losee, "Investigation of Terrestrial Neutron Induced Failure Rates in Silicon Carbide JFET Based Cascode FETs," vol. 2022 IEEE, p.8–13, 2022.
DOI: 10.1109/IRPS48227.2022.9764434
Google Scholar
[21]
F. Principato, S. Altieri, L. Abbene, and F. Pintacuda, "Accelerated tests on Si and SiC power transistors with thermal, fastand ultra-fast neutrons," Sensors (Switzerland), vol. 20, no. 11, p.1–15, 2020.
DOI: 10.3390/s20113021
Google Scholar