[1]
L. F. Costa, G. Buticchi and M. Liserre, "Highly Efficient and Reliable SiC-Based DC-DC Converter for Smart Transformer," in IEEE Transactions on Industrial Electronics, vol. 64, no. 10, pp.8383-8392, Oct. 2017.
DOI: 10.1109/TIE.2017.2696481
Google Scholar
[2]
R. M. Burkart and J. W. Kolar, "Comparative η- ρ- σ Pareto Optimization of Si and SiC Multilevel Dual-Active-Bridge Topologies With Wide Input Voltage Range," in IEEE Transactions on Power Electronics, vol. 32, no. 7, pp.5258-5270, July 2017.
DOI: 10.1109/TPEL.2016.2614139
Google Scholar
[3]
M. Liserre, G. Buticchi, M. Andresen, G. De Carne, L. F. Costa and Z. -X. Zou, "The Smart Transformer: Impact on the Electric Grid and Technology Challenges," in IEEE Industrial Electronics Magazine, vol. 10, no. 2, pp.46-58, June 2016, doi: 10.1109/MIE.2016.2551418.[4] S. Raghavendran, K. S. Kumar, A. Tirupathi and C. B, in: 2020 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies, (2021), pp.1-6.
DOI: 10.1109/mie.2016.2551418
Google Scholar
[5]
R. Green, A. Lelis and D. Habersat: "Threshold-voltage bias-temperature instability in commercially-available SiC MOSFETs", Jpn. J. Appl. Phys., Vol. 55, (2016), p. 04EA03
DOI: 10.7567/JJAP.55.04EA03
Google Scholar
[6]
T. Aichinger, G. Rescher and G. Pobegen: "Threshold voltage peculiarities and bias temperature instabilities of SiC MOSFETs", Microelectronics Reliability, Vol. 80, (2018), pp.68-78.
DOI: 10.1016/j.microrel.2017.11.020
Google Scholar
[7]
J. A. O. González and O. Alatise: "A Novel Non-Intrusive Technique for BTI Characterization in SiC mosfets," in IEEE Transactions on Power Electronics, Vol. 34, no. 6, pp.5737-5747, (2019).
DOI: 10.1109/TPEL.2018.2870067
Google Scholar
[8]
H. Luo, F. Iannuzzo and M. Turnaturi: "Role of Threshold Voltage Shift in Highly Accelerated Power Cycling Tests for SiC MOSFET Modules," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 2, pp.1657-1667, (2020).
DOI: 10.1109/JESTPE.2019.2894717
Google Scholar
[9]
K. Puschkarsky, H. Reisinger, G. A. Rott, C. Schlünder, W. Gustin and T. Grasser, "An Efficient Analog Compact NBTI Model for Stress and Recovery Based on Activation Energy Maps," in IEEE Transactions on Electron Devices, vol. 66, no. 11, pp.4623-4630, Nov. 2019.
DOI: 10.1109/TED.2019.2941889
Google Scholar
[10]
Langpoklakpam, C.; Liu, A.-C.; Chu, K.-H.; Hsu, L.-H.; Lee, W.-C.; Chen, S.-C.; Sun, C.-W.; Shih, M.-H.; Lee, K.-Y.; Kuo and H.-C: "Review of Silicon Carbide Processing for Power MOSFET.", Crystals, (2022), Vol. 12, 245
DOI: 10.3390/cryst12020245
Google Scholar
[11]
Information on https://www.wolfspeed.com/tools-and-support/power/ltspice-and-plecs-models
Google Scholar
[12]
M. Waltl, "Ultra-Low Noise Defect Probing Instrument for Defect Spectroscopy of MOS Transistors," in IEEE Transactions on Device and Materials Reliability, vol. 20, no. 2, pp.242-250, June 2020.
DOI: 10.1109/TDMR.2020.2988650
Google Scholar
[13]
Langpoklakpam, C.; Liu, A.-C.; Chu, K.-H.; Hsu, L.-H.; Lee, W.-C.; Chen, S.-C.; Sun, C.-W.; Shih, M.-H.; Lee, K.-Y.; Kuo, H.-C. Review of Silicon Carbide Processing for Power MOSFET. Crystals 2022, 12, 245.
DOI: 10.3390/cryst12020245
Google Scholar
[14]
F. Yang, E. Ugur, S. Pu, B. Akin and M. Das: "Investigation of Aging's Effect on the Conduction and Switching Loss in SiC MOSFETs," 2019 IEEE Energy Conversion Congress and Exposition (ECCE), (2019), pp.6166-6173.
DOI: 10.1109/ECCE.2019.8912284
Google Scholar
[15]
Lelis, A.J.; Green, R.; Habersat, D.B. "SiC MOSFET threshold-stability issues". Mater. Sci. Semicond. Process. 2018, 78, 32-37
DOI: 10.1016/j.mssp.2017.11.028
Google Scholar
[16]
A. J. Lelis et al., "Time Dependence of Bias-Stress-Induced SiC MOSFET Threshold-Voltage Instability Measurements," in IEEE Transactions on Electron Devices, vol. 55, no. 8, pp.1835-1840, Aug. 2008.
DOI: 10.1109/TED.2008.926672
Google Scholar
[17]
A. J. Lelis, R. Green, D. B. Habersat and M. El, "Basic Mechanisms of Threshold-Voltage Instability and Implications for Reliability Testing of SiC MOSFETs," in IEEE Transactions on Electron Devices, vol. 62, no. 2, pp.316-323, Feb. 2015, doi: 10.1109/TED.2014.2356172.[18] G. Rzepa et al.: "Comphy - a compact-physics framework for unified modeling of BTI" Microelectronics Reliability, (2018)
DOI: 10.1016/j.microrel.2018.04.002
Google Scholar
[19]
C. Schleich et al., "Physical Modeling of Bias Temperature Instabilities in SiC MOSFETs," 2019 IEEE International Electron Devices Meeting (IEDM), 2019, p.20.5.1-20.5.4.
DOI: 10.1109/IEDM19573.2019.8993446
Google Scholar
[20]
C. Schleich, D. Waldhör, K. Waschneck, M. Feil, H. Reisinger, T. Grasser and M. Waltl: "Physical Modeling of Charge Trapping in 4H-SiC DMOSFET Technologies," in IEEE Transactions on Electron Devices, vol. 68, no. 8, pp.4016-4021, Aug. 2021.
DOI: 10.1109/TED.2021.3092295
Google Scholar
[21]
Y. Hernandez, B. Stampfer, T. Grasser and M. Waltl: "Impact of Bias Temperature Instabilities on the Performance of Logic Inverter Circuits Using Different SiC Transistor Technologies"; Crystals, Vol. 11, (2021), pp.1150-9.
DOI: 10.3390/cryst11091150
Google Scholar
[22]
J. Martin-Martinez, N. Ayala, R. Rodriguez, M. Nafria and X. Aymerich, "RELAB: A tool to include MOSFETs BTI and variability in SPICE simulators," 2012 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), (2012), pp.249-252.
DOI: 10.1109/SMACD.2012.6339386
Google Scholar
[23]
K. Puschkarsky, H. Reisinger, W. Gustin, T. Grasser: "Voltage-Dependent Activation Energy Maps for Analytic Lifetime Modeling of NBTI Without Time Extrapolation"; IEEE Transactions on Electron Devices, Vol. 65, (2018), pp.4764-4771.
DOI: 10.1109/TED.2018.2870170
Google Scholar
[24]
J. O. Gonzalez and O. Alatise: "Bias Temperature Instability and Junction Temperature Measurement Using Electrical Parameters in SiC Power MOSFETs," in IEEE Transactions on Industry Applications, Vol. 57, no. 2, pp.1664-1676, (2021).
DOI: 10.1109/TIA.2020.3045120
Google Scholar