AC-Stress Degradation in SiC MOSFETs

Article Preview

Abstract:

This work presents very recent results regarding threshold-voltage (VT) degradation due to the application of an AC gate-bias stress (also known as a gate-switching stress). We show that this phenomenon includes both a seemingly-permanent VT shift and an increase in the observed VT hysteresis. This degradation effect is found primarily in trench-geometry devices when exposed to what can be described as a negative bias overstress that exceeds the negative bias rating of the device, but that not all trench devices are equally susceptible, suggesting that device design and processing details are critical in limiting the severity of this effect.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1092)

Pages:

151-155

Citation:

Online since:

June 2023

Export:

Share:

Citation:

* - Corresponding Author

[1] D. B. Habersat, A. J. Lelis, AC-Stress Degradation and Its Anneal in SiC MOSFETs, IEEE Trans. Elec. Dev. 69 (2022) 5068-5073.

DOI: 10.1109/ted.2022.3190815

Google Scholar

[2] A. J. Lelis, D. Urciuoli, E. Schroen, D. B. Habersat, R. Green, Effect of Dynamic Threshold-Voltage Instability on Dynamic On-State Resistance in SiC MOSFETs, accepted for publication in IEEE Trans. Elec. Dev. (2022).

DOI: 10.1109/ted.2022.3198037

Google Scholar

[3] H. Jiang, X. Zhong, G. Qiu, L. Tang, X. Qi, L. Ran, Dynamic Gate Stress Induced Threshold Voltage Drift of Silicon Carbide MOSFET, IEEE Elec. Dev. Lett. 41 (2020) 1284-1287.

DOI: 10.1109/led.2020.3007626

Google Scholar

[4] Y. Cai, H. Xu, P. Sun, J. Ke, E. Deng, Z. Zhao, X. Li, Z. Chen, Effect of Threshold Voltage Hysteresis on Switching Characteristics of Silicon Carbide MOSFETs, IEEE Trans. Elec. Dev. 68 (2021) 5014-5021.

DOI: 10.1109/ted.2021.3101459

Google Scholar

[5] X. Zhong, H. Jiang, G. Qiu, L. Tang, H. Mao, C. Xu, X. Jiang, J. Hu, X. Qi, L. Ran, Bias Temperature Instability of Silicon Carbide Power MOSFET Under AC Gate Stresses, IEEE Trans. Power Electron. 37 (2022) 1998-2008.

DOI: 10.1109/tpel.2021.3105272

Google Scholar

[6] P. Salmen, M. Feil, K. Waschneck, H. Reisinger, G. Rescher, T. Aichinger, A new test procedure to realistically estimate end-of-life electrical parameter stability of SiC MOSFETs in switching operation, in Proceedings of the 2021 IEEE International Reliability Physics Symposium (2021) p.1.

DOI: 10.1109/irps46558.2021.9405207

Google Scholar

[7] H. Jiang, X. Qi, G. Qiu, X. Zhong, L. Tang, H. Mao, Z. Wu, H. Chen, L. Ran, A Physical Explanation of Threshold Voltage Drift of SiC MOSFET Induced by Gate Switching, IEEE Trans. Power Electron. 37 (2022) 8830.

DOI: 10.1109/tpel.2022.3161678

Google Scholar

[8] P. Salmen, M. Feil, K. Waschneck, H. Reisinger, G. Rescher, I. Voss, M. Sievers, T. Aichinger, Gate-switching-stress test: Electrical parameter stability of SiC MOSFETs in switching operation, Microelectron. Reliab. 135 (2022) 114575.

DOI: 10.1016/j.microrel.2022.114575

Google Scholar

[9] D. Habersat, A. Lelis, R. Green, Influence of High-Temperature Bias Stress on Room-Temperature VT Drift Measurements in SiC Power MOSFETs, Mater. Sci. Forum 963 (2019) 757-762.

DOI: 10.4028/www.scientific.net/msf.963.757

Google Scholar

[10] R. Green, A. Lelis, M. El, D. Habersat, A Study of High Temperature DC and AC Gate Stressing on the Performance and Reliability of Power SiC MOSFETs, Mater. Sci. Forum 740 (2013) 549-552.

DOI: 10.4028/www.scientific.net/msf.740-742.549

Google Scholar

[11] A. J. Lelis, R. Green, D. B. Habersat, and M. El, Basic Mechanisms of Threshold-Voltage Instability and Implications for Reliability Testing of SiC MOSFETs, IEEE Trans. Elec. Dev. 62 (2015) 316-323.

DOI: 10.1109/ted.2014.2356172

Google Scholar