[1]
J. Baliga, High Voltage Silicon Carbide Devices. MRS Online Proceedings Library. 512, (1998) 77–88.
Google Scholar
[2]
C.R. Eddy Jr., D.K. Gaskill, Silicon carbide as a platform for power electronics, Science. 324 (5933) (2009) 1398–1400.
DOI: 10.1126/science.1168704
Google Scholar
[3]
J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás, J. Rebollo, A survey of wide bandgap power semiconductor devices, IEEE Trans. Power Electron. 29 (5) (2014) 2155–2163.
DOI: 10.1109/tpel.2013.2268900
Google Scholar
[4]
P.G. Neudeck, Electrical Impact of SiC Structural Crystal Defects on High Electric Field Devices, NASA/TM. (1999) 209647.
Google Scholar
[5]
T. Ohmi, M. Miyashita, M. Itano, T. Imaoka, I. Kawanabe, Dependence of thin-oxide films quality on surface microroughness, IEEE Trans. Electron Devices. 39 (3) (1992) 537–545.
DOI: 10.1109/16.123475
Google Scholar
[6]
T. Kimoto, & J. A. Cooper, Physical Properties of Silicon Carbide, in: Fundamentals of Silicon Carbide Technology: Growth, characterization, devices and applications, Wiley-IEEE Press, 2014, p.11–38.
DOI: 10.1002/9781118313534.ch2
Google Scholar
[7]
B. Matović, T. Yano, Silicon Carbide and Other Carbides: From Stars to the Advanced Ceramics, in: S. Somiya (Eds.), Handbook of Advanced Ceramics (Second Edition), Academic Press, 2013, pp.225-244.
DOI: 10.1016/b978-0-12-385469-8.00014-9
Google Scholar
[8]
H. Maeda, et. al., High-Speed Slicing of SiC Ingot by High-Speed Multi Wire Saw. Materials Science Forum. 778-780 (2014) 771-775.
DOI: 10.4028/www.scientific.net/msf.778-780.771
Google Scholar
[9]
Y. Li, et. al., Surface micromorphology and nanostructures evolution in hybrid laser processes of slicing and polishing single crystal 4H-SiC, Journal of Materials Science & Technology. 184 (2024) 235-244.
DOI: 10.1016/j.jmst.2023.09.046
Google Scholar
[10]
M. Swoboda, et. al., Laser Assisted SiC Wafering Using COLD SPLIT. Materials Science Forum. 897 (2017) 403–406.
DOI: 10.4028/www.scientific.net/msf.897.403
Google Scholar
[11]
Y. Zhang, et. al., Internal modified structure of silicon carbide prepared by ultrafast laser for wafer slicing, Ceramics International. 49 (3) (2023) 5249-5260.
DOI: 10.1016/j.ceramint.2022.10.043
Google Scholar
[12]
W. Cheng, et. al., Discussion on the lapping and polishing process of 4H-SiC wafer, The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Suzhou. (2013) 841-844.
DOI: 10.1109/nems.2013.6559856
Google Scholar
[13]
H. Yashiro, et. al., Development of Lapping and Polishing Technologies of 4H-SiC Wafers for Power Device Applications. Materials Science Forum. 600–603 (2008) 819–822.
DOI: 10.4028/www.scientific.net/msf.600-603.819
Google Scholar
[14]
G. Ma, et. al., A Review on Precision Polishing Technology of Single-Crystal SiC. Crystals. 12 (2022) 101.
Google Scholar
[15]
S. Jiang, et. al., Recent progress in SiC monocrystal growth and wafer machining. Pan Tao Ti Hsueh Pao/Chinese Journal of Semiconductors 28 (2007) 810-814.
Google Scholar
[16]
W. Cheng, et. al., Discussion on the lapping and polishing process of 4H-SiC wafer, The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Suzhou. (2013) 841-844.
DOI: 10.1109/nems.2013.6559856
Google Scholar
[17]
S. Jiang, et. al., Recent progress in SiC monocrystal growth and wafer machining. Pan Tao Ti Hsueh Pao/Chinese Journal of Semiconductors 28 (2007) 810-814.
Google Scholar
[18]
J. Deng, et. al., Optimisation of Lapping Process Parameters for Single-Crystal 4H–SiC Using Orthogonal Experiments and Grey Relational Analysis. Micromachines. 12 (2021) 910.
DOI: 10.3390/mi12080910
Google Scholar
[19]
F. Guo, et. al., Shape modulation due to sub-surface damage difference on N-type 4H–SiC wafer during lapping and polishing, Materials Science in Semiconductor Processing. 152 (2022) 107124.
DOI: 10.1016/j.mssp.2022.107124
Google Scholar
[20]
R. Vacassy, et. al., Surface Engineering of SiC through Nano-Grinding and CMP, Materials Science Forum. 924 (2018) 539–42.
DOI: 10.4028/www.scientific.net/msf.924.539
Google Scholar