[1]
R.B. James, T.E. Schlesinger, Semiconductors for Room Temperature Nuclear Detector Applications, Semiconductors and Semimetals, Vol 43, Academic Press, (1995).
DOI: 10.1016/s0080-8784(08)62739-8
Google Scholar
[2]
A. Owens et al. J. of Appl. Physics, 2001, Vol 90; Part 10 , pp.5376-5381.
Google Scholar
[3]
C. Fiorini, A. Longoni, IEEE Trans. Nucl. Sci. 46, no. 6, (1999) p. (2011).
Google Scholar
[4]
V.A. Tikhomirova et al., Soviet Physics - Semiconductors, vol. 6, no. 5, (1972).
Google Scholar
[5]
A.R. Dulloo et al., IEEE Trans. Nucl. Sci., vol. 46 (1999) pp.275-279.
Google Scholar
[6]
F. Nava, P. Vanni, C. Lanzieri, C. Canali, Nucl. Instr. and Meth. A437 (1999), pp.354-358.
Google Scholar
[7]
G. Bertuccio, R. Casiraghi, F. Nava, IEEE Trans. on Nucl. Sci., Vol 48, (2001), pp.232-233.
Google Scholar
[10]
[1] [10] [2] [10] [3] [10] [4] T = 27 °C Np L X-ray Lγ 20. 8 keV Lβ 17. 7 keV 241 Am 26. 3 keV Pulser 415 eV FWHM 59. 5 keV 693 eV FWHM Lα 13. 9 keV SiC Detector Vbias = 200 V Counts Energy [ keV ].
DOI: 10.18185/erzifbed.999593
Google Scholar
[10]
[1] [10] [2] [10] [3] [10] [4] T = 100 °C Np L X-ray Lγ 20. 8 keV Lβ 17. 7 keV 241 Am 26. 3 keV Pulser 1. 0 keV FWHM 59. 5 keV 1. 1 keV FWHM Lα 13. 9 keV SiC Detector Vbias = 200 V Counts Energy [ keV ] Fig. 4A-B. X-γ ray spectra of 241Am acquired with the SiC detector operated at 27 °C and 100 °C, respectively. Noise levels of 415 eV FWHM at 27 °C and 1 keV FWHM at 100 °C have been measured. The energy resolution is limited by the front-end silicon JFET, expecially at 100 °C. The detector is biased at 200 Volts.
DOI: 10.1007/978-1-4614-7804-1_4
Google Scholar