Investigation of the SiC Transistor and Diode Nuclear Detectors at 8 MeV Proton Irradiation

Abstract:

Article Preview

Nuclear-particle detectors based on SiC with a structure composed of an n+-type substrate, a p-type epitaxial layer, and a Schottky barrier are studied. Structures with a ~10-µm-thick 6H-SiC layer exhibit transistor properties, whereas those with a ~30-µm-thick 4H-SiC layer exhibit diode properties. It is established that a more than tenfold amplification of the signal is observed in the transistor-type structure. The amplification is retained after irradiation with 8-MeV protons with a dose of at least 5 × 10 13 cm –2 ; in this case, the resolution is ≤ 10%. Amplification of the signal was not observed in the structures of diode type. However, there were diode-type detectors with a resolution of ≈ 3%, which is acceptable for a number of applications, even after irradiation with the highest dose of 2 × 10 14 cm.

Info:

Periodical:

Materials Science Forum (Volumes 483-485)

Edited by:

Roberta Nipoti, Antonella Poggi and Andrea Scorzoni

Pages:

1025-1028

DOI:

10.4028/www.scientific.net/MSF.483-485.1025

Citation:

N. B. Strokan et al., "Investigation of the SiC Transistor and Diode Nuclear Detectors at 8 MeV Proton Irradiation", Materials Science Forum, Vols. 483-485, pp. 1025-1028, 2005

Online since:

May 2005

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.