p.121
p.125
p.129
p.133
p.137
p.141
p.147
p.151
p.155
Large Area SiC Epitaxial Layer Growth in a Warm-Wall Planetary VPE Reactor
Abstract:
Experimental results are presented for SiC epitaxial layer growths employing a largearea, 7x3-inch, warm-wall planetary SiC-VPE reactor. This high-throughput reactor has been optimized for the growth of uniform 0.01 to 30-micron thick, specular, device-quality SiC epitaxial layers with background doping concentrations of <1x1014 cm-3. Multi-layer device profiles such as Schottky, MESFETs, SITs, and BJTs with n-type doping from ~1x1015 cm-3 to >1x1019 cm-3, p-type doping from ~3x1015 cm-3 to >1x1020 cm-3, and abrupt doping transitions (~1 decade/nm) are regularly grown in continuous growth runs. Intrawafer layer thickness and n-type doping uniformities of <1% and <5% s/mean have been achieved. Within a run, wafer-to-wafer thickness and doping variation are ~±1% and ~±5% respectively. Long term run-to-run variations while under process control are approximately ~3% s/mean for thickness and ~5% s/mean for doping. Latest results from an even larger 6x4-inch (100-mm) reactor are also presented.
Info:
Periodical:
Pages:
137-140
Citation:
Online since:
May 2005
Keywords:
Price:
Сopyright:
© 2005 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: