Large Area SiC Epitaxial Layer Growth in a Warm-Wall Planetary VPE Reactor

Abstract:

Article Preview

Experimental results are presented for SiC epitaxial layer growths employing a largearea, 7x3-inch, warm-wall planetary SiC-VPE reactor. This high-throughput reactor has been optimized for the growth of uniform 0.01 to 30-micron thick, specular, device-quality SiC epitaxial layers with background doping concentrations of <1x1014 cm-3. Multi-layer device profiles such as Schottky, MESFETs, SITs, and BJTs with n-type doping from ~1x1015 cm-3 to >1x1019 cm-3, p-type doping from ~3x1015 cm-3 to >1x1020 cm-3, and abrupt doping transitions (~1 decade/nm) are regularly grown in continuous growth runs. Intrawafer layer thickness and n-type doping uniformities of <1% and <5% s/mean have been achieved. Within a run, wafer-to-wafer thickness and doping variation are ~±1% and ~±5% respectively. Long term run-to-run variations while under process control are approximately ~3% s/mean for thickness and ~5% s/mean for doping. Latest results from an even larger 6x4-inch (100-mm) reactor are also presented.

Info:

Periodical:

Materials Science Forum (Volumes 483-485)

Edited by:

Roberta Nipoti, Antonella Poggi and Andrea Scorzoni

Pages:

137-140

DOI:

10.4028/www.scientific.net/MSF.483-485.137

Citation:

A. A. Burk et al., "Large Area SiC Epitaxial Layer Growth in a Warm-Wall Planetary VPE Reactor", Materials Science Forum, Vols. 483-485, pp. 137-140, 2005

Online since:

May 2005

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.