Ab Initio Calculation of Shallow Defects: Results for P-Related Donors in SiC

Article Preview

Abstract:

The conclusion which is drawn from the EPR line broadening and narrowing of the N shallow donor in an isotope enriched and non-enriched 4H-SiC and 6H-SiC crystals along with previous ENDOR results shows that the spin-density distribution over the C and Si nuclei differs between the 4H-SiC and 6H-SiC polytypes. The main part of the spin density in 4H-SiC is located on the Si sublattice. In contrast, in 6H-SiC the main part of the spin density is located on the C sublattice. An explanation for the difference in the electronic wave function of the N donor in 4HSiC and 6H-SiC can be found in the large difference in the band structure of two polytypes and in the position of the minima in the Brillouin zone.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 483-485)

Pages:

501-506

Citation:

Online since:

May 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Recent Major Advances in SiC, ed. by W. J. Choyke, H. Matsunami, and G. Pensl, Springer-Verlag Berlin (2004).

Google Scholar

[2] M. Bockstedte, A. Mattausch, and O. Pankratov, Appl. Phys. Lett. 85, 58 (2004).

Google Scholar

[3] A.I. Veinger, A.G. Zabrodski, G.A. Lomakina, E.N. Mokhov, Sov. Phys. Solid State 28, 917 (1986).

Google Scholar

[4] E.N. Kalabukhova, S.N. Lukin, and E.N. Mokhov, Sov. Phys. Solid State 35, 361 (1993).

Google Scholar

[5] S. Greulich-Weber, Phys. Stat. Sol. A 162, 95 (1997).

Google Scholar

[6] E. Rauls, M.V.B. Pinheiro, S. Greulich-Weber, and U. Gerstmann, Phys. Rev. B 70, 85202 (2004).

Google Scholar

[7] P.G. Baranov, I.V. Il'in, E.N. Mokhov, H.J. von Bardeleben, and J.L. Cantin, Phys. Rev. B 66, 165206 (2002).

Google Scholar

[8] A. Gali, P. De´ak, P.R. Briddon, R.P. Devaty, and W.J. Choyke, Phys. Rev. B 61, 12602 (2000).

Google Scholar

[9] E. Rauls, U. Gerstmann, H. Overhof, and Th. Frauenheim, Physica B 340-342, 184 (2003).

DOI: 10.1016/j.physb.2003.09.234

Google Scholar

[10] M.V.B. Pinheiro, S. Greulich-Weber, and J. -M. Spaeth, Physica B 340-342, 146 (2003).

Google Scholar

[11] H. Overhof and U. Gerstmann, Phys. Rev. Lett. 92, 087602 (2004).

Google Scholar

[12] Th. Frauenheim, G. Seifert, M. Elstner, Z. Hajnal, G. Jungnickel, D. Porezag, S. Suhai, R. Scholz, phys. stat. sol. (b) 217, 41 (2000).

DOI: 10.1002/(sici)1521-3951(200001)217:1<41::aid-pssb41>3.0.co;2-v

Google Scholar

[13] E. Rauls, A. Gali, P. De´ak, and Th. Frauenheim, Phys. Rev. B, Vol. 68, 155208 (2003).

Google Scholar

[14] E. Rauls, Dissertation, Universit¨at Paderborn, Germany, (2003).

Google Scholar

[15] U. Gerstmann, E. Rauls, Th. Frauenheim, and H. Overhof, Phys. Rev. B 67, 205202 (2003).

Google Scholar

[16] E.B. Hale and R.L. Mieher, Phys. Rev. 184 739, (1969); Phys. Rev. 184 751, (1969).

Google Scholar

[17] J. L. Ivey and R. L. Mieher, Phys. Rev. B 11, 833, (1975); Phys. Rev. B 11, 849, (1975).

Google Scholar

[18] O. Gunnarsson, O. Jepsen, and O. K. Andersen, Phys. Rev. B 27, 7144 (1983).

Google Scholar

[19] H. Heißenstein, Dissertation, Universit¨at Erlangen, Germany, (2002).

Google Scholar

[20] M. Bockstedte, M. Heid, and O. Pankratov, Phys. Rev. B 67, 193102, (2003).

Google Scholar

[21] T. Umeda, J. Isoya, N. Morishita, T. Ohshima, T. Kamiya, Phys. Rev. B 69, 121201(R), (2004).

Google Scholar

[22] J. -M. Spaeth, H. Overhof, Point defects in semiconductors and insulators, Springer, Berlin (2002). This article was processed using the LATEX macro package with TTP style.

Google Scholar