Measurement of Stress Distribution Near Fatigue Crack in Ultra-Fine Grained Steel by Synchrotron Radiation

Abstract:

Article Preview

Single-edge-notched specimens of ultrafine-grained steel were fatigued. The mean grain size of the steel is about 2 micrometers. Propagation behavior of fatigue cracks was observed with the crack closure. The resistance of the crack propagation of ultrafine-grained steel was larger than that of conventional steels. The crack closure acted as an important role for the larger resistance of fatigue crack propagation. After fatigue tests, stress distribution near the fatigue crack was measured by monochromatic X-rays from synchrotron radiation. The irradiated area was 100 µm x 100 µm. Residual and loading stress distributions ahead of the crack tip and on the crack wake was measured at the maximum stress intensity factor and zero applied load. The stress was determined by sin2ψ method. The measured stress was compared with the value calculated by FEM and the fatigue crack propagation model. The stress distribution at the maximum load and residual stresses agreed very well with the calculated results. The crack opening stress calculated by the residual stresses agreed with the experimental result.

Info:

Periodical:

Materials Science Forum (Volumes 490-491)

Edited by:

Sabine Denis, Takao Hanabusa, Bob Baoping He, Eric Mittemeijer, JunMa Nan, Ismail Cevdet Noyan, Berthold Scholtes, Keisuke Tanaka, KeWei Xu

Pages:

118-123

DOI:

10.4028/www.scientific.net/MSF.490-491.118

Citation:

Y. Akiniwa et al., "Measurement of Stress Distribution Near Fatigue Crack in Ultra-Fine Grained Steel by Synchrotron Radiation", Materials Science Forum, Vols. 490-491, pp. 118-123, 2005

Online since:

July 2005

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.