Influence of Growth Parameters on the Residual Strain in 3C-SiC Epitaxial Layers on (001) Silicon

Article Preview

Abstract:

3C-SiC epitaxial layers were grown on on-axis Si (001) substrates by low-pressure hot-wall chemical vapour deposition. Depending on the growth parameters, the residual strain in the 3C-SiC layer was seen to be tensile or compressive. In this work, the influence of parameters, such as growth temperature and C/Si ratio in the vapour phase, on residual strain and macroscopic layer bow is investigated. We found that the wafer bow changes from convex, at a deposition temperature of 1270° C, to concave at 1370° C. High resolution x-ray diffraction data indicate that the crystal-line perfection of the layers is lower for decreasing deposition temperature and increasing compres-sive strain. No remarkable influence of the C/Si ratio in the gaseous atmosphere on the FWHM of the rocking curve was observed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 600-603)

Pages:

223-226

Citation:

Online since:

September 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Yun, T. Takahashi, Y. Ishida, H. Okumura: J. Crystal Growth 291 (2206) 140.

Google Scholar

[2] H. Nagasawa, K. Yagi, T. Kawahara: J. Crystal Growth 237-239 (2002) 1244.

Google Scholar

[3] M. Zielinski, S. Ndiaye, T. Chassange, S. Juillaguet, R. Lewandowska, M. Portail, A. Leycuras, J. Camassel : phys. stat. sol. (a) 204 (2007) 981.

DOI: 10.1002/pssa.200674130

Google Scholar

[4] E. Bustarret, D. Vobornik, A. Roulot, T. Chassagne, G. Ferro, Y. Monteil, E. MartinezGuerrero, H. Mariette, B. Daudin, L. Si Dang: phys. stat. sol. (a) 195 (2003) 18.

DOI: 10.1002/pssa.200306261

Google Scholar

[5] G. Wagner, D. Schulz, D. Siche: Progress of Crystal Growth and Characterization of Materials 47 (2005).

Google Scholar

[20] µm 0, 00 nm.

Google Scholar

[20] µm 10 µm 20 µm.

Google Scholar

[10] µm.

Google Scholar

µm 55, 15 nm.

Google Scholar

[20] µm 0. 00 nm 26. 77 nm.

Google Scholar