Dynamical Simulation of SiO2/4H-SiC Interface on C-Face Oxidation Process: From First Principles

Article Preview

Abstract:

We perform a dynamical simulation of the SiO2/4H-SiC C-face interface oxidation process at 2500K using first-principles molecular dynamics based on plane waves, supercells, and the projector-augmented wave method. The slab model is used for the simulation. Oxygen molecules are dissociated in the SiO2 layers or by Si atoms at the SiO2 interface. The O atoms of the O2 molecule oxidize the C atoms at the SiC interface and form Si-C-O or CO2-C complexes. COx (x=1 or 2) molecules are desorbed from these complexes by thermal motion. COx molecules diffuse in the SiO2 layers when they do not react with dangling bonds. COx molecule formed during C-face oxidation more easily diffuse than those formed during Si-face oxidation in the interface region.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 600-603)

Pages:

591-596

Citation:

Online since:

September 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation: