Materials Science Forum Vols. 618-619

Paper Title Page

Abstract: An attempt has been made to clad Mg alloy with Al by twin-roll casting. This was done by inserting an Al sheet between the roll and the Mg alloy melt during twin-roll casting. Microstructural investigation across the transverse section of the as-cast Al-clad Mg alloy sheet reveals a very good interfacial bonding between Al and the base Mg alloy. Annealing of the Al-clad Mg alloy sheet results in the formation of layers of various intermetallic phases along the Mg/Al interface. Subsequent rolling of the as-annealed sheet significantly improves the formability of the reaction zone, as evidenced by the cracking of the base Mg alloy before the cracking of the reaction zone.
467
Abstract: The influence of the microstructure, particularly the morphology of the β phase, on the corrosion of Mg alloys has been studied using AZ91 as a model alloy and compared with the corrosion of pure magnesium, used as a standard for comparison. The concentration of the impurity element Fe was below the limit evaluated from theoretical phase diagram construction. Corrosion was measured using hydrogen evolution measurements and some polarization measurements. Corrosion behaviour was characterized for four different microstructures produced by heat treatment of as-cast AZ91: namely (i) as-cast, (ii) homogenization anneal (for 5h and 10h at 380°C), (iii) solid solution and (iv) solution treated and aged. The influence of microstructure can be understood from the interaction of the following three factors: (i) the surface films, (ii) micro-galvanic corrosion acceleration dependant on the amount and distribution of the second phase (the  phase in AZ91) and (iii) the second phase can act as a corrosion barrier and hinder corrosion propagation in the matrix, if the second phase is in the form of a continuous network. It is expected that these factors are important for all multi-phase Mg alloys because all known second phases have corrosion potentials more positive than that of the -phase. The electrochemical measurements did not give good values for the corrosion rate in agreement with the literature.
473
Abstract: Scanning electron microscopy has been used to characterize the intermetallic structure development across the tensile cross-section of binary Mg-Al alloys with solute content between ~0.5 and 12 mass%Al. The alloys which contain less than 1 mass%Al exhibited a single phase grain structure. For compositions greater than 1 mass% Al, an eutectic network with a discontinuous distribution of intermetallics across the cross-section became apparent. In alloys with greater than 8.77 mass%Al, the intermetallics form a continuous network over the entire cross-section. The scale of the intermetallics network is finer at the surface and corner regions of the cross section in comparison with the core regions.
479
Abstract: The present authors have succeeded in single pass large draught rolling of AZ31 and ZK60A magnesium alloy sheet below 200°C without heating rolls by raising the rolling speed above 1000m/min. Maximum reduction attained in single pass rolling was 60%. Among magnesium alloys, AZ31 is known as the most ductile alloy. It remains uncertain whether the high limiting reduction by high speed rolling can be attained in other magnesium alloys that are less ductile but stronger than AZ31. In this study, AZ80A (Mg-8.1%Al-0.63%Zn) sheets with the thickness of 2.7mm cut from the extruded sheets were used. Rolling temperature was varied from RT to 350°C. Rolling speed was 1000m/min. The limiting reduction in thickness increases with rolling temperature, and the maximum reduction of 52% is obtained at 250°C. The fracture surface of sheet rolled at 100°C shows ductile fractured surface, while it shows brittle fracture surface at 350°C. This difference in fracture mode is attributed to the precipitation of -particles at grain boundaries during holding at 350°C before rolling. From this result, high speed rolling can also be an effective tool for improving the rolling deformability of AZ80 sheet. The hardness of the rolled sheets measured on the transverse plane increases with increasing temperature and reduction. The variation of hardness with rolling temperature and reduction indicates the occurrence of dynamic recrystallization (DRX). The sheet rolled at 200°C with the reduction of 50% shows the tensile strength of 353MPa and the elongation of 29%, which is an excellent strength-ductility balance. By applying high-speed rolling process to AZ80 magnesium alloy, we can obtain a remarkable improvement in the material characteristics as well as rolling deformability.
483
Abstract: Deliberate partitioning of solute elements between the matrix solid solution and dispersed precipitates in aged aluminium alloys can be facilitated by underageing during heat treatment. Although this practice may cause some reduction in tensile properties, it has been shown that significant improvements may be achieved in creep resistance, fatigue strength and fracture toughness. Exploitation of secondary precipitation can allow simultaneous increases to be obtained in tensile and fracture properties.
487
Abstract: Powder metallurgy (P/M) titanium matrix composite (TMC) reinforced with multi-wall carbon nanotube (MWCNT) was prepared by spark plasma sintering (SPS) and hot extrusion process, where the powder surface was coated by un-bundled CNTs via wet process. The microstructure and mechanical properties of P/M pure titanium and reinforced with CNTs were evaluated. The distribution of CNTs and in-situ formed titanium carbide (TiC) compounds during sintering was investigated by optical and scanning electron microscopy (SEM) equipped with EDS analyser. The mechanical properties of TMC were significantly improved by adding a small amount of CNTs. For example, when employing the pure titanium composite powder coated with CNTs of 0.35 mass%, the increase of tensile strength and yield stress of the extruded TMC was 157 MPa and 169 MPa, respectively, compared to those of extruded titanium materials with no CNT additive. Fractured surfaces of specimens were analysed by SEM, and the uniform distribution of CNTs and TiC particles, being effective for the dispersion strengthening, at the surface of the TMC were obviously observed.
495
Abstract: The present study aims to develop a process to make ultrafine grained (UFG) Ti-47Al-2Cr (at %) alloy using elemental Ti, Al and Cr powders. The process involves mechanical milling of a mixture of the elemental powders to produce a Ti/Al/Cr composite powder, compaction of the milled powder, and consolidation of the powder compact using hot isostatic pressing (HIP) or powder compact forging. This paper is to give an overview of microstructure and the mechanical properties of the alloy samples obtained using the above processing technique. Inhomogeneous microstructures with high amounts of (α2) Ti3Al phase, along with, elemental Ti, were observed in some samples. An attempt has been made to explain the formation of (α2) Ti3Al, and elemental Ti, in the alloy and the processing conditions appropriate for the specific alloy are also discussed.
501
Abstract: Titanium has excellent properties as an engineering material such as light weight, high strength and high resistance to corrosion and fracture. However, the high cost associated with the materials and current process technologies is not conducive to higher-volume production for consumer industry. It appears near net shape manufacturing has to be used to manufacture titanium and titanium alloys parts. Investigators are exploring several near net shape technologies. However, most of these technologies involve melting and solidification. Each new layer starts out molten, solidifies, and must eventually cool to room temperature. Oxygen sensitive material such as titanium needs to be processed under vacuum. There is a great need for revolutionary coating and direct Manufacturing technology to extend the application of titanium and titanium alloys from top end, aerospace and biomedical to lower end consumer use. It appears Cold Spray Technology can deliver a suitable and cost effective coating and direct manufacturing solution for titanium industry. CSIRO Light Metals Flagship has pioneered in developing direct manufacturing technologies to fabricate titanium parts using Cold Spray. Mechanical properties of Cold Spray titanium in as sprayed and heat treated conditions are presented and compared with wrought titanium. Some of technologies such as Cold Spray for direct manufacturing of seamless titanium pipes are discussed.
505
Abstract: The liquid-phase sintering of Ti-Si binary alloys using mixed elemental powders has been explored. Sintering at low liquid contents avoids excessive porosity and bulging of compacts, and leads to development of a densified surface. Compacts made in this way can be HIPped without a container to full or near full densities. Exploiting the surface densification phenomenon may enable cost-effective net shape manufacturing of full density titanium components.
509
Abstract: Consolidation of titanium and titanium alloy powders using thermomechanical powder metallurgy (TPM) processes (powder compact forging, extrusion and rolling) is one way that can lead to cost-effective production of high value-added consolidated titanium and titanium alloy products such as near-net shaped components, tubes and plates. This paper provides an overview of the quality, microstructure (to limited depth), porosity level and mechanical properties of disks produced using open die forging of powder compacts of CP titanium and Ti-6Al-4V alloy powders. The general materials science principles underlying the relationships between processing conditions, microstructure and the mechanical properties of the disks made by using the powder compact forging are discussed.
513

Showing 91 to 100 of 124 Paper Titles