Use of Vacuum as a Gate Dielectric: The SiC VacFET

Article Preview

Abstract:

We introduce the vacuum field-effect transistor (VacFET), the first SiC FET to use a vacuum-sealed cavity in place of the traditional, solid gate dielectric. This device architecture eliminates the need to thermally oxidize the SiC surface, a practice which has been widely reported to inhibit the performance and reliability of SiC MOSFETs. Using a combination of batch-compatible electronics and micromachining processing techniques, a polycrystalline SiC bridge is suspended above a 4H-SiC substrate, and the underlying cavity is sealed under vacuum. The fundamental studies made possible by such a device could shed much-needed light on the basic electronic properties of an inverted SiC surface. In this introductory report, we detail the analytical design and fabrication necessary to manufacture the VacFET, and we also demonstrate proof of the concept using turn-on and output characteristics of the first functional SiC device.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 679-680)

Pages:

657-661

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Singh, Microelectron. Reliab. 46, pp.713-30 (2006).

Google Scholar

[2] M. Bassler, G. Pensl, and V. Afanas'ev, Diam. Relat. Mater. 6, pp.1472-75 (1997).

Google Scholar

[3] L. A. Lipkin and J. W. Palmour, IEEE T. Electron Dev. 46 (3), pp.525-32 (1999).

Google Scholar

[4] G. Y. Chung, J. R. Williams, T. Isaacs-Smith, F. Ren, K. McDonald, and L. C. Feldman, Appl. Phys. Lett. 81 (22), pp.4266-68 (2002), and references therein.

Google Scholar

[5] S. Dhar, S. Wang, A. C. Ahyi, et al., Mater. Sci. Forum, 527-529, pp.949-54 (2006).

Google Scholar

[6] S. Pantelides, et al., Mater. Sci. Forum, 527-529, pp.935-48 (2006), and references therein.

Google Scholar

[7] Product information available at http: /www. cree. com.

Google Scholar

[8] D. Spry and P. Neudeck, private communication.

Google Scholar

[9] C. A. Zorman, S. Rajgopal, X. A. Fu, R. Jezeski, J. Melzak, and M. Mehregany, Electrochem. Solid St. 5 (10), pp. G99-101 (2002).

DOI: 10.1149/1.1506461

Google Scholar

[10] X. A. Fu, J. Dunning, C. A. Zorman, and M. Mehregany, Proc. of Solid-State Sensors, Actuators, and Microsystems Conference (Transducers), pp.1087-90 (2009).

DOI: 10.1109/sensor.2009.5285948

Google Scholar

[11] S. Nakao, T. Ando, L. Chen, M. Mehregany, and K. Sato, IEEE Conf. on MEMS, pp.447-50 (2008).

Google Scholar

[12] S. Timoshenko, Theory of Plates and Shells, 1st ed. McGraw-Hill College (1959).

Google Scholar

[13] A. Suzuki, K. Mameno, N. Furui, and H. Matsunami, Appl. Phys. Lett. 39 (1), pp.89-90 (1981).

Google Scholar