High Quality 3C-SiC Substrate for MOSFET Fabrication

Article Preview

Abstract:

Quantitative efficacies of several methods for stacking fault (SF) reduction are evaluated using Monte Carlo (MC) simulation. SF density on a 3C–SiC {001} surface depends on interactions of adjoining SFs: annihilation between counter pairs of SFs and termination by orthogonal SF pairs. However, SFs are not entirely eliminated when growth occurs on undulant-Si and switch back epitaxy (SBE) due to spontaneous SF collimation that suppresses the annihilation probability of counter SFs. The MC simulation also reveals the efficacy of SF reduction method which includes the growth of 3C–SiC on finite area bounded by side walls. One can theoretically reduce the SF density below 100 cm-1 on 3C–SiC {001} surface. A practical way for eliminating the SF by termination at side walls is demonstrated, and it clearly exhibits that the SF density can be reduced under 120 cm-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-98

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.Pensl, M.Bassler, F.Ciobanu, V.V. Afanas'ev, H.Yano, T.Kimoto, H.Matsunami, Mater.Res.Soc.Symp.Proc. 640 (2001), p. H(3), 2.

Google Scholar

[2] H. Nagasawa, M. Abe, K. Yagi, T. Kawahara N. Hatta, phys. stat. Sol. (b) 245, no.7, (2008), 1272.

Google Scholar

[3] M. Abe, H. Nagasawa, P. Ericsson, H. Strömberg, M. Bakowski, A. Schöner, Microelectron. Eng. 83, (2006), 24.

Google Scholar

[4] M. Bakowski, A. Schöner, P. Ericsson, H. Strömberg, H. Nagasawa, M. Abe, J. Telecommun. Information Tech., No.2, (2007), 49.

Google Scholar

[5] M.Kobayashi, H.Uchida, A.Minami, T.Sakata, R.Esteve, A.Schoner, Mater.Sci.Forum 679-680 (2011) 645.

Google Scholar

[6] H.Kumakura, T.Ehara, A.Iwabuchi, T.Kawahara, N.Hatta, M.Abe, H.Nagasawa, Abstract of Japanese conference '17thmeeting on SiC and related wide bandgap semiconductors' P-100, (2008) 207, Tokyo.

Google Scholar

[7] T.Kawahara, N.Natta, K.Yagi, H.Uchida, M.Kobayashi, M.Abe, H.Nagasawa, B.Zippelius, G.Pensl, Meter.Sci.Forum 645-648 (2010), 339.

DOI: 10.4028/www.scientific.net/msf.645-648.339

Google Scholar

[8] K.Shibahara, S.Nishino, H. Matsunami, J.Cryst.Growth, 78 (1986) 538.

Google Scholar

[9] H.Nagasawa, K.Yagi, T.Kawahara, J.Cryst.Growth, 237-239 (2002) 1244.

Google Scholar

[10] H.Nagasawa, K.Yagi, T.Kawahara, N.Hatta, Mat.Res.Soc.Symp.Proc. 742 (2003) 47.

Google Scholar

[11] K.Yagi, T.Kawahara, N.Hatta, H.Nagasawa, Mater. Sci. Forum 527-529 (2006) 291.

Google Scholar

[12] M.Camarda, A.La Magna, A.Canino, F.La Via, Mater. Sci. Forum 645-648 (2010) 539.

Google Scholar

[13] H.Nagasawa, T.Kawahara, K.Yagi, N.Hatta, Mater.Sci.Forum 679-680 (2011) 282.

Google Scholar

[14] H.Nagasawa, K.Yagi, Electrochemical Society Proceedings 98-1 (1998) 1418.

Google Scholar