Characterization of Band Diagrams of Different Metal-SiO2-SiC(3C) Structures

Article Preview

Abstract:

In this work the band diagrams of different MOS structures based on 3C-SiC substrate were determined. This has been achieved by application of many measurement techniques allowing determination of many electric parameters of the investigated structures. These parameters allowed to construct complete band diagrams which are demonstrated for two modes: for the flat-band state in the semiconductor and for the flat-band state in the dielectric.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-103

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Ruff, H. Mitlehner and R. Helbig, SiC devices: Physics and Numerical Simulation, IEEE Trans. Electron. Dev. 41(6) (1994), 1040-1054.

DOI: 10.1109/16.293319

Google Scholar

[2] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin and M. Burns, Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies, J. Appl. Phys. 76(3) (1994), 1363-1398.

DOI: 10.1063/1.358463

Google Scholar

[3] M. Shur, SiC parameters handbook, http://www.ioffe.ru/SVA/NSM/Semicond/SiC.

Google Scholar

[4] R. Schörner, P. Friedrichs and D. Peters, Detailed investigation of n-channel enhancement 6H-SiC MOSFETs, IEEE Trans. Electron Dev. 46 (1999), 533-541.

DOI: 10.1109/16.748873

Google Scholar

[5] V. V. Afanas'ev, M. Bassler, G. Pensl, M. Schulz, Intrinsic SiC/SiO2 interface states, Phys. Stat. Sol.(a) 162 (1997), 321-337.

DOI: 10.1002/1521-396x(199707)162:1<321::aid-pssa321>3.0.co;2-f

Google Scholar

[6] M. Bakowski, A. Schöner, P. Ericsson, H. Strömberg, H. Nagasawa and M. Abe, Development of 3C-SiC MOSFETs, J. Telecommun. Information Tech. 2 (2007), 49-56.

DOI: 10.4028/www.scientific.net/msf.483-485.801

Google Scholar

[7] M. Bakowski, Status and prospects of SiC power devices, IEE J. Trans. Ind. Appl. 126 (2006), 391-399.

Google Scholar

[8] E. H. Nicollian and J. R. Brews, MOS Physics and Technology, John Wiley, New York, 1982.

Google Scholar

[9] R. H. Fowler, The analysis of photoelectric sensitivity curves for clean metals at various temperatures", Phys. Rev. 38 (1931), 45-56.

DOI: 10.1103/physrev.38.45

Google Scholar

[10] V. V. Afanas'ev, Internal Photoemission Spectroscopy. Principles and Applic., Elsevier, 2008.

Google Scholar

[11] C. N. Berglund and R. J. Powell, Photoinjection into SiO2: Use of optical interference to determine electron and hole contributions, J. Appl. Phys. 40(13) (1969), 5093-5101.

DOI: 10.1063/1.1657358

Google Scholar

[12] H. M. Przewlocki, Internal photoemission characteristics of metal-insulator-semiconductor structures at low electric fields in the insulator, J. Appl. Phys. 85(9) (1999), 6610-6618.

DOI: 10.1063/1.370169

Google Scholar

[13] H. M. Przewlocki, Theory and applications of internal photoemission in the MOS system at low electric fields, Solid-State Electr. 45 (2001), 1241-1250.

DOI: 10.1016/s0038-1101(00)00274-4

Google Scholar

[14] S. K. Krawczyk, H. M. Przewlocki, A. Jakubowski, New ways to measure the work function difference in MOS structures, Revue Phys. Appl. 17 (1982), 473-480.

DOI: 10.1051/rphysap:01982001708047300

Google Scholar

[15] V. V. Afanas'ev, M. Bassler, G. Pensl, M. J. Schulz and E. Stein von Kamienski, Band offsets and electronic structure of SiC/SiO2 interfaces, J. Appl. Phys. 79(6) (1996), 3108-3114.

DOI: 10.1063/1.361254

Google Scholar