Visible and Deep Ultraviolet Study of SiC/SiO2 Interface

Article Preview

Abstract:

Silicon carbide (SiC) is a wide band gap semiconductor having good thermal conductivity and high break down voltage. Formation of SiO2 layer in thermal oxidation process completes the set of properties of SiC as a promising material for fabrication of high power and high frequency electronic devices. This picture is perturbed by Near Interface Traps (NIT's) that decrease the surface mobility of charge carriers. The origin of NIT's is still the subject of discussion and there are several candidates for NIT's. One possibility is the formation of carbonic structures during the process of manufacturing of MOS-type structures. The aim of this work was to look for possible carbonic inclusions with Raman spectroscopy. The attention of authors was focused on non-destructive way of application of the experimental technique.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

118-123

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] 1.E. Pippel, J. Woltensdorf, H. Ö. Ólafsson and. E. Ö. Sveinbjörg, Interfaces between 4H-SiC and SiO2: Microstructure, nanochemistry, and near-interface traps, Jour. Appl. Phys. 97 (2005) 034302

DOI: 10.1063/1.1836004

Google Scholar

[2] K. C. Chang, N. T. Nuhfer, L. M. Porter and Q. Wahab, High-carbon concentrations at the silicon dioxide–silicon carbide interface identified by electron energy loss spectroscopy, Appl. Phys. Lett. 77 (2000) 2186-2188

DOI: 10.1063/1.1314293

Google Scholar

[3] W. Lu, L. C. Feldman, Y. Song, S. Dhar, W. E. Collins, W. C. Mitchel and J. R. Williams, Graphitic features on SiC surface following oxidation and etching using surface enhanced Raman spectroscopy, Appl. Phys. Lett. 85 (2004) 3495-3497

DOI: 10.1063/1.1804610

Google Scholar

[4] Y. Sasaki Y. Nishina, M. Sato and K. Okamura, Raman study of SiC fibres made from polycarbosilane, Jour. Material Science 22 (1978) 443-448

DOI: 10.1007/bf01160751

Google Scholar

[5] A. Gavrikov, A. Knizhnik, A. Safonov, A. Scherbinin, A. Bagatur'yans, B. Potapkin, A.Chatterjee and K. Matocha, First-principles-based investigation of kinetic mechanism of SiC (0001) dry oxidation including defect generation and passivation, Jour. Appl. Phys, 104 (2008) 033508

DOI: 10.1063/1.3006004

Google Scholar

[6] A. C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B. 61 (2000) 14095

DOI: 10.1103/physrevb.61.14095

Google Scholar

[7] J. C. Burton, L. Sun, F. H. Long, Z. C. Feng and I. T. Ferguson, First- and second-order Raman scattering from semi-insulating 4H-SiC, Phys. Rev. B 59 (1999) 7282-7284

DOI: 10.1103/physrevb.59.7282

Google Scholar

[8] W. Windl, K. Karch, P. Pavone, O. Schütt, D. Strauch, W. H. Weber, K. C. Hass and L. Rimai, Second-order Raman spectra of SiC: Experimental and theoretical results from abinitio phonon calculations, Phys. Rev. B 49 (1994) 8764-8767

DOI: 10.1103/physrevb.49.8764

Google Scholar

[9] J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt and S. R. P. Silva, Raman spectroscopy on amorphous carbon films, Jour. Appl. Phys. 80 (1996) 440-447

DOI: 10.1063/1.362745

Google Scholar

[10] N. Radić, B. Pivac, F. Meinardi, Th. Koch, Raman study of carbon clusters in W–C thin films, Materials Science and Engineering A 396 (2005) 290–295

DOI: 10.1016/j.msea.2005.01.007

Google Scholar

[11] Z. Y. Chen, J. P. Zhao, T. Yano, T. Ooie, M. Yoneda, and J. Sakakibara, Observation of sp3 bonding in tetrahedral amorphous carbon using visible Raman spectroscopy, Jour. Appl. Phys. 88 (2000) 2305-2308

DOI: 10.1063/1.1288160

Google Scholar

[12] A. Das, B. Chakraborty and A. K. Sood, Raman spectroscopy of graphene on different substrates and influence of defects, Bull. Mater. Sci. 3 , (2008), 579–584

DOI: 10.1007/s12034-008-0090-5

Google Scholar

[13] L. Ravagnan, F. Siviero, C. Lenardi, P. Piseri, E. Barborini, and P. Milani, Cluster-Beam Deposition and in situ Characterization of Carbyne-Rich Carbon Films, Phys. Rev. Lett. 89 (2002) 285506

DOI: 10.1103/physrevlett.89.285506

Google Scholar

[14] A. Ferrari and J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, Phil. Trans. R. Soc. Lond. A 362 (2004) 2477–2512

DOI: 10.1098/rsta.2004.1452

Google Scholar

[15] J.R. Shi, X. Shi, Z. Sun, E. Liu, B.K. Tay, S.P. Lau, Ultraviolet and visible Raman studies of nitrogenated tetrahedral amorphous carbon films, Thin Solid Films 366 (2000) 169-174

DOI: 10.1016/s0040-6090(00)00732-x

Google Scholar

[16] P. Borowicz T. Gutt, T. Małachowski, M. Latek, Carbonic inclusions on SiC/SiO2 interface investigated with Raman Scattering, Diamond and Related Materials 20 (2011) 665-674

DOI: 10.1016/j.diamond.2011.03.019

Google Scholar