In-Grown Stacking Faults in SiC-CVD Using Dichlorosilane and Propane as Precursors

Article Preview

Abstract:

In-grown stacking faults (IGSFs) were studied in 4H-SiC homoepitaxial growth from a SiH2Cl2-C3H8-H2 system. Most of the IGSFs, start from the epilayer/substrate interface, and exhibit photoluminescence emission peak at 2.58 eV (480 nm) indicating of 8H polytype. The growth parameters, including growth temperature, growth pressure, growth rate, hydrogen etching, et al., varied around the regular growth condition do not show a significant effect on the IGSF generation. Reactor furniture is identified to be a major reason of IGSF formation, especially when the insulation part of the furnace is not completely isolated from the growth zone. Dusting of insulation material is crucial in the formation of IGSFs. When using graphite felt as the insulation material, the IGSF density in the epilayer can be as high at ~104 cm-2. Improvement of the insulation material by using graphite foil reduces the density to 30-100 cm-2. Further reduction of IGSF density to less than 10 cm-2 is achieved by mild pretreatment of the substrate in molten KOH-NaOH eutectic.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 717-720)

Pages:

121-124

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.H. Hong, A.V. Samant, P. Pirouz: Philos. Mag. A Vol. 80 (2000), p.919

Google Scholar

[2] P. Pirouz, D. J.H. Cockayne, N. Sumida, P. Hirsch, A.R. Lang: Proc. R. Soc. A Vol. 386 (1983), p.241

Google Scholar

[3] H. Fujiwara, T. Kimoto, T. Tojo, H. Matsunami: Appl. Phys. Lett. Vol. 87 (2005), p.051912

Google Scholar

[4] G. Feng, J. Suda, T. Kimoto: Appl. Phys. Lett. Vol. 92 (2008), p.221906

Google Scholar

[5] S.I. Maximenko, J.A. Freitas, Jr., P.B. Klein, A. Shrivastava, T.S. Sudarshan: Appl. Phys. Lett. Vol. 94 (2009), p.092101

Google Scholar

[6] J. Hassan, A. Henry, I.G. Ivanov, J.P. Bergman: J. Appl. Phys. Vol. 105 (2009), p.123513.

Google Scholar

[7] J.D. Caldwell, P.B. Klein, M.E. Twigg, R.E. Stahlbush, O.J. Glembocki, K.X. Liu, K.D. Hobart, F.Kub: Appl. Phys. Lett. Vol. 89 (2006), p.103519

Google Scholar

[8] I. Chowdhury, M.V.S. Chandrashekhar, P.B. Klein, J.D. Caldwell, T.S. Sudarshan: J. Cryst. Growth Vol. 316 (2011), p.60

Google Scholar

[9] S.U. Omar, H. Song, T.S. Sudarshan, M.V.S. Chandrashekhar: in this proceeding

Google Scholar

[10] S. Izumi, H. Tsuchida, I. Kamata, T. Tawara: Appl. Phys. Lett. Vol. 86 (2005), p.202108

Google Scholar

[11] H. Tsuchida, M. Ito, I. Kamata, M. Nagano: Phys. Status Solidi B Vol. 246 (2009), p.1553

Google Scholar

[12] H. Song, T.S. Sudarshan: in this proceeding

Google Scholar