Use of Vanadium Doping for Compensated and Semi-Insulating SiC Epitaxial Layers for SiC Device Applications

Article Preview

Abstract:

Vanadium doping from SiCl4 source during epitaxial growth with chlorinated C and Si precursors was investigated as a mean of achieving compensated and semi-insulating epitaxial 4H-SiC layers for device applications. Thin epilayers were grown at 1450°C with a growth rate of ~6 μm/h. Experiments at 1600°C resulted in the growth rates ranging from 60 to 90 µm/h producing epilayers with thickness above 30 µm. V concentrations up to about 1017cm-3 were found safe for achieving defect-free epilayer surface morphology, however certain degradation of the crystalline quality was detected by XRD at V concentrations as low as 3-5x1015 cm-3. Controllable compensation of nitrogen donors with V acceptors provided low-doped and semi-insulating epitaxial layers. Mesa isolated PiN diodes with V-acceptor-compensated n- epilayers used as drift regions showed qualitatively normal forward- and reverse-bias behavior.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 717-720)

Pages:

133-136

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, T. J. Jenkins, IEEE Electron Device Letters, Vol. 20, No.4, pp.161-163, 1999.

DOI: 10.1109/55.753753

Google Scholar

[2] W. C. Mitchel, R. Perrin, J. Goldstein, A. Saxler, M. Roth, S. R. Smith, J. S. Solomon, A. O. Evwaraye, J. Appl. Phy., 86, pp.5040-5044, 1999.

DOI: 10.1063/1.371476

Google Scholar

[3] W. C. Mitchell, W. D. Mitchell, M. E. Zvanut, G. Landis, Solid-State Electronics 48, 1693, 2003.

Google Scholar

[4] A. Ellison, B. Magnusson, C. Hemmingsson, W. Magnusson, T. Iakimov, L. Storasta, A. Henry, N. Henelius, and E. Janzén, Mater. Res. Soc. Symp. 640, H1.2 (2001).

DOI: 10.1557/proc-640-h1.2

Google Scholar

[5] G. Müller, M.F. Brady, W.H. Brixius, R.C. Glass, H.McD. Hobgood, J.R. Jenny, R.T. Leonard, D.P. Malta, A.R. Powell, V.F. Tvestkov, S.T. Allen, J.W. Palmour, and C.H. Carter, Jr., Mat. Sci. Forum 433-436, 39 (2003).

DOI: 10.4028/www.scientific.net/msf.433-436.39

Google Scholar

[6] P. G. Baranov, I. V. Ilyin, E. N. Mokhov and V. A. Khramtsov, Semi. Sci. Tech, 16 (2001) 39–43.

Google Scholar

[7] H. K. Song, S. Y. Kwon, H. S. Seo, J. H. Moon, J. H. Yim, J. H. Lee, H. J. Kim, and J. K. Jeong, Appl. Phys. Lett., 89, 152112 (2006).

Google Scholar

[8] S. Kotamraju, B. Krishnan, G. Melnychuk, and Y. Koshka, Journal of Crystal Growth 312 (2010) pp.645-650.

DOI: 10.1016/j.jcrysgro.2009.12.017

Google Scholar

[9] S. P. Kotamraju, B. Krishnan, and Y. Koshka, Phys. Status Solidi RRL 3, No. 5, 157-159 (2009).

Google Scholar

[10] B. Krishnan, S. P. Kotamraju, G. Melnychuk, H. Das, J. N. Merrett and Y. Koshka, , J. Electron. Mater., 39(1) (2010), p.34.

Google Scholar

[11] B. Krishnan, N. Merrett, G. Melnychuk, and Y. Koshka, Materials Science Forum Vols. 645-648 (2010) pp.925-928.

DOI: 10.4028/www.scientific.net/msf.645-648.925

Google Scholar

[12] W. C. Mitchel, R. Perrin, J. Goldstein, A. Saxler, M. Roth, S. R. Smith, J. S. Solomon, A. O. Evwaraye, J. Appl. Phy., 86, pp.5040-5044, 1999.

DOI: 10.1063/1.371476

Google Scholar

[13] M. E. Zvanut, V. V. Konovalov, Haiyan Wang, W. C. Mitchel, W. D. Mitchell, and G. Landis, J. Appl. Phy., 96, pp.5484-5489, 2004.

Google Scholar