Growth of SiC Nanowires on Different Planes of 4H-SiC Substrates

Article Preview

Abstract:

Growth of SiC nanowires (NWs) on monocrystalline 4H-SiC substrates was conducted to investigate a possibility of NW alignment and polytype control. The growth directions of the NWs on the top surfaces and the vertical sidewalls of 4H-SiC mesas having different crystallographic orientations were investigated. The majority of the NWs crystallize in the 3C polytype with the growth axis. Six orientations of the 3C NWs axis with respect to the substrate were obtained simultaneously when growing on the (0001) plane. In contrast, no more than two NW axis orientations coexisted when growing on a particular mesa sidewall. Growth on a particular {10-10} plane resulted in only one NW axis orientation, giving well-aligned NWs.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 717-720)

Pages:

1279-1282

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Zekentes and K. Rogdakis, J. Phys. D: Appl. Phys. 44 (2011) 133001.

Google Scholar

[2] S.E. Saddow, C. Coletti, C.L. Frewin, N. Schettini, A. Oliveros and M. Jarosezeski, Mater. Res. Soc. Symp. Proc. Vol. 1246 (2010) pp.193-198.

Google Scholar

[3] R. Yakimova, R. M. Petoral Jr., G. R. Yazdi, C. Vahlberg, A. Lloyd Spetz, K. Uvdal, J. Phys. D: Appl. Phys. 40 (2007) 6435-6442.

DOI: 10.1088/0022-3727/40/20/s20

Google Scholar

[4] P.G. Neudeck, D. J. Spry, A.J. Trunek, L. J. Evans, L.-Y. Chen, G. W. Hunter, and D. Androjna, Mater. Sci. Forum V. 600-603 (2009) pp.1199-1202.

DOI: 10.4028/www.scientific.net/msf.600-603.1199

Google Scholar

[5] R. Pampuch, G. Górny, L. Stobierski, Glass Physics and Chemistry, Vol. 31, No. 3 (2005), p.370–376.

Google Scholar

[6] H.Y. Peng, X.T. Zhou, H.L. Lai, N. Wang, S.T. Lee, J. Mater. Res., Vol. 15, No. 9, Sep 2000.

Google Scholar

[7] H. K. Seong, T. E. Park, S. Lee, K. R. Lee, J. K. Park, H. J. Choi, Met. Mater. Int., Vol. 15, No. 1 (2009), pp.107-111.

Google Scholar

[8] Y. Yao, S.T. Lee, F.H. Li, Chemical Physics Letters 381 (2003) 628–633.

Google Scholar

[9] H. Wang, Z. Xie, W. Yang, J. Fang, L. An, Crystal Growth & Design, Vol. 8, No. 11, (2008) 3893-3896.

Google Scholar

[10] F. Gao, W. Yang, H. Wang, Y. Fan, Z. Xie, L. An, Crystal Growth & Design, Vol. 8, No. 5 (2008) 1461-1464

Google Scholar

[11] R. Wu, B. Li, M. Gao, J. Chen, Q. Zhu, Y. Pan, Nanotechnology 19 (2008) 335602.

Google Scholar

[12] M. Bechelany, A. Brioude, D. Cornu, G. Ferro, P. Miele, Adv. Funct. Mater. 17 (2007) 939–943

DOI: 10.1002/adfm.200600816

Google Scholar

[13] H. Yoshida, H. Kohno, S. Ichikawa, T. Akita, S. Takeda, Materials Letters, 61 (2007) 3134-3137.

DOI: 10.1016/j.matlet.2006.11.011

Google Scholar

[14] H. Wang, L. Lin, W. Yang, Z. Xie, L. An, J. Phys. Chem. C, 114 (2010) 2591–2594.

Google Scholar

[15] S. G. Sundaresan, A. V. Davydov, M. D. Vaudin, I. Levin, J. E. Maslar, Y. L. Tian, M. V. Rao, Chem. Mater., 19 (23) (2007) 5531-5537.

DOI: 10.1021/cm071213r

Google Scholar

[16] Bharat Krishnan, Rooban Venkatesh K. G. Thirumalai, and Yaroslav Koshka , Siddarth Sundaresan , Igor Levin and Albert V. Davydov , J. Neil Merrett, Crystal Growth & Design 11(2), (2011) 538-541

DOI: 10.1021/cg101405u

Google Scholar

[17] Rooban Venkatesh K. G. Thirumalai, Bharat Krishnan, Albert V. Davydov, J. Neil Merrett and Yaroslav Koshka, submitted to Nano Research.

Google Scholar

[18] Rooban Venkatesh K. G. Thirumalai, Bharat Krishnan, Albert V. Davydov, J. Neil Merrett and Yaroslav Koshka, submitted to Crystal Growth and Design.

Google Scholar

[19] W. Si, M. Dudley, Hua-Shuang Kong, J. Sumakeris, and C. Carter, Jr., JEM, Volume 26, Number 3, 151-159.

Google Scholar