Low Defect Density Bulk AlN Substrates for High Performance Electronics and Optoelectronics

Article Preview

Abstract:

Using the physical vapor transport (PVT) method, single crystal boules of AlN have been grown and wafers sliced from them have been characterized by synchrotron white beam X-ray topography (SWBXT) in conjunction with optical microscopy. X-ray topographs reveal that the wafers contain dislocations that are inhomogeneously distributed with densities varying from as low as 0 cm-2 to as high as 104 cm-2. Two types of dislocations have been identified: basal plane dislocations and threading dislocations, both having Burgers vectors of type 1/3<112-0> indicating that their origin is likely due to post-growth deformation. In some cases, the dislocations are arranged in low angle grain boundaries. However, large areas of the wafers are nearly dislocation-free and section X-ray topographs of these regions reveal the high crystalline perfection.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 717-720)

Pages:

1287-1290

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Schlesser, R. Dalmau, Z. Sitar, J. Cryst. Growth 241 (2002) 416-420.

Google Scholar

[2] R. Dalmau, Z. Sitar, AlN bulk crystal growth by physical vapor transport, in: G. Dhanaraj, K. Byrappa, V. Prasad, M. Dudley (Eds.), Handbook of Crystal Growth, Springer, 2010 pp.821-843.

DOI: 10.1007/978-3-540-74761-1_24

Google Scholar

[3] B. Raghothamachar, G. Dhanaraj, M. Dudley, X-ray Topography Techniques for Defect Characterization of Crystals, in: G. Dhanaraj, K. Byrappa, V. Prasad, M. Dudley (Eds.), Handbook of Crystal Growth, Springer, 2010, pp.1425-1452.

DOI: 10.1007/978-3-540-74761-1_42

Google Scholar

[4] P. Lu, R. Collazo, R. F. Dalmau, G. Durkaya, N. Dietz, B. Raghothamachar, M. Dudley, Z. Sitar, J. Cryst. Growth 312 (2009) 58-63.

DOI: 10.1016/j.jcrysgro.2009.10.008

Google Scholar

[5] Z. G. Herro, D. Zhuang, R. Schlesser, Z. Sitar, J. Cryst. Growth 312 (2010) 2519-2521.

DOI: 10.1016/j.jcrysgro.2010.04.005

Google Scholar

[6] Z. G. Herro, D. Zhuang, R. Schlesser, R. Collazo, Z. Sitar, J. Cryst. Growth 286 (2006) 205-208.

DOI: 10.1016/j.jcrysgro.2005.10.074

Google Scholar

[7] A. Rice, R. Collazo, J. Tweedie, R. Dalmau, S. Mita, J. Xie, Z. Sitar, J. Appl. Phys. 108 (2010) 043510.

Google Scholar

[8] R. Dalmau, B. Moody, R. Schlesser, S. Mita, J. Xie, M. Feneberg, B. Neuschl, K. Thonke, R. Collazo, A. Rice, J. Tweedie, Z. Sitar, J. Electrochem. Soc. 158 (2011) H530-H535.

DOI: 10.1149/1.3560527

Google Scholar

[9] B. Raghothamachar, M. Dudley, J. C. Rojo, K. Morgan, L. J. Schowalter, J. Cryst. Growth 250 (2003) 244-250.

DOI: 10.1016/s0022-0248(02)02253-4

Google Scholar

[10] R. Dalmau, B. Moody, J. Xie, R. Collazo, Z. Sitar, Phys. Stat. Sol (a) 208 (2011) 1545-1547.

Google Scholar