Conversion of Si Nanowires into SiC Nanotubes

Article Preview

Abstract:

Carburization of silicon nanowires (NWs), with diameters of about 800 nm and lengths of about 10 µm, under methane at high temperature in order to obtain silicon carbide (SiC) nanostructures is reported here. The produced SiC nanostructures display a tubular shape and are polycrystalline. The as-prepared silicon carbide nanotubes (NTs) were characterized and studied by scanning electron microscopy (SEM), dual focused ion beam – scanning electron microscope (FIB-SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The formation of nanotubes can be explained by the out-diffusion of Si through the SiC during the carburization process.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 717-720)

Pages:

1275-1278

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Kaciulis, L. Pandolfi, E. Comini, G. Faglia, M. Ferroni, G. Sberveglieri, S. Kandasamy, M. Shafiei, W. Wlodarski, Nanowires of metal oxides for gas sensing applications, Surf. Interface Anal. 40 (2007) 575-578.

DOI: 10.1002/sia.2736

Google Scholar

[2] T. Baron, M. Gordon, F. Dhalluin, C. Ternon, Si nanowire growth and characterization using a microelectronics-compatible catalyst: PtSi, Appl. Phys. Lett. 89 (2006) 233111-233113.

DOI: 10.1063/1.2402118

Google Scholar

[3] M. Lin, K.P. Loh, C. Boothroyd, A. Du, Nanocantilevers made of bent silicon carbide nanowire-in-silicon oxide nanocones, Appl. Phys. Lett. 84 (2004) 5388-5390.

DOI: 10.1063/1.1828601

Google Scholar

[4] K. Zekentes, K. Rogdakis, SiC nanowires: material and devices, J. Phys. D Appl. Phys. 44 (2011) 133001-133017.

DOI: 10.1088/0022-3727/44/13/133001

Google Scholar

[5] H. Dai, E.W. Wong, Y.Z. Lu, S. Fan, C.M. Lieber, Synthesis and characterization of carbide nanorods, Nature, 375 (1995) 769-772.

DOI: 10.1038/375769a0

Google Scholar

[6] B.C. Kang, S.B. Lee, J.H. Boo, Growth of beta-SiC nanowires and thin films by metalorganic chemical vapor deposition using dichloromethylvinylsilane, J. Vac. Sci. Technol. B 23 (2005) 1722-1725.

DOI: 10.1116/1.1949221

Google Scholar

[7] G. Attolini, F. Rossi, M. Bosi, B.E. Watts, G. Salviati, Synthesis and characterization of 3C -SiC nanowires, J. Non-Cryst. Solids 354 (2008) 5227-5229.

DOI: 10.1016/j.jnoncrysol.2008.05.064

Google Scholar

[8] M.H. Rümmeli, D.B. Adebimpe, E. Borowiak-Palen, T. Gemming, P. Ayala, N. Ioannides, T. Pichler, A. Huczko, S. Cudzilo, M. Knupfer, B. Büchner, Hydrogen activated axial inter-conversion in SiC nanowires, J. Solid State Chem. 182 (2009) 602-607.

DOI: 10.1016/j.jssc.2008.12.004

Google Scholar

[9] F. Dhalluin, P.J. Desré, M.I. Den Hertog, J.L. Rouvière, P. Ferret, P. Gentile, T. Baron, Critical condition for growth of silicon nanowires, J. Appl. Phys. 102 (2007) 094906-094906-094911.

DOI: 10.1063/1.2811935

Google Scholar

[10] S. Nakashima, H. Harima, Raman investigation of SiC polytypes, Phys. Status Solidi A 162 (1997) 39-64.

DOI: 10.1002/1521-396x(199707)162:1<39::aid-pssa39>3.0.co;2-l

Google Scholar

[11] S. Nishino, J.A. Powell, H.A. Will, Production of large-area single-crystal wafers of cubic SiC for semiconductor devices, Appl. Phys. Lett. 42 (1983) 460-462.

DOI: 10.1063/1.93970

Google Scholar

[12] J.P. Li, A.J. Steckl, Nucleation and void formation mechanisms in SiC thin film growth on Si by carbonization, J Electrochem Soc. 142 (1995) 634-641.

DOI: 10.1149/1.2044113

Google Scholar