Theoretical Study of Thermoelectric Properties of SiC Nanowires

Article Preview

Abstract:

We present, for the first time, simulations of thermoelectric properties of silicon carbide (SiC) nanowires as a function of the wire cross section at high temperature (500K), based on non-equilibrium classical molecular dynamics simulations for the lattice thermal transport and non-equilibrium green's function for the electrical transport. Our calculations show that figure of merit (ZT) was increasing with decreasing cross section area: ZT of SiC nanowire at 2x2 nm2 has maximum value in the range of 0.65 - 0.89 at 500K, which is 7 - 8 times larger than maximum ZT of SiC thin film value (0.125 at 973 K). These results show that SiC may be a promising material for thermoelectric applications operating at high temperature.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 717-720)

Pages:

561-564

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Rogdakis, S. Poli, E. Bano, K. Zekentes, M. G. Pala, Phonon and surface roughness limited mobility of gate-all-around 3C-SiC and Si nanowire FETs, Nanotechnology 20 (2009) 295202.

DOI: 10.1088/0957-4484/20/29/295202

Google Scholar

[2] W. M. Zhou, F. Fang, Z. Y. Hou, L. J. Yan, Y. F. Zhang, Field-Effect Transistor Based on β-SiC Nanowire, IEEE Elec. Dev. Lett. 27 (2006) 463.

DOI: 10.1109/led.2006.874219

Google Scholar

[3] Chan-Oh Jang, Tae-Hong Kim, Seung-Yong Lee, Dong-Joo Kim, Sang-Kwon Lee, Low resistance ohmic contacts to SiC nanowires and their applications to field-effect transistors, Nanotechnology 19 (2008) 345203.

DOI: 10.1088/0957-4484/19/34/345203

Google Scholar

[4] N Papanikolaou, Lattice thermal conductivity of SiC nanowires, J. Phys.: Condens. Matter 20 (2008) 135201.

DOI: 10.1088/0953-8984/20/13/135201

Google Scholar

[5] Ju Li, Lisa Porter, Sidney Yip, Atomistic modeling of finite-temperature properties of crystalline β-SiC, J. Nucl. Mater. 246 (1997) 53.

Google Scholar

[6] L. D. Hicks, M. S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B 47 (1993) 16631.

DOI: 10.1103/physrevb.47.16631

Google Scholar

[7] Allon I. Hochbaum, Peidong Yang, Semiconductor Nanowires for Energy Conversion, Chem. Rev. 110 ( 2010) 527.

Google Scholar

[8] Raseong Kim, Supriyo Datta, Mark S. Lundstrom, Influence of dimensionality on thermoelectric device performance, J. Appl. Phys. 105 (2009) 034506.

DOI: 10.1063/1.3074347

Google Scholar

[9] Allon I. Hochbaum, Renkun Chen, Raul Diaz Delgado, Wenjie Liang, Erik C. Garnett, Mark Najarian, Arun Majumdar, Peidong Yang, Enhanced thermoelectric performance of rough silicon nanowires, Nature 45 (2008) 163.

DOI: 10.1038/nature06381

Google Scholar

[10] K. M. Lee, T. Y. Choi, S. K. Lee, D. Poulikakos, Focused ion beam-assisted manipulation of single and double β-SiC nanowires and their thermal conductivity measurements by the four-point probe 3ω method, Nanotechnology 21 (2010) 125301.

DOI: 10.1088/0957-4484/21/12/125301

Google Scholar

[11] X. H. Wang, A. Yamamoto, K. Eguchi, H. Obara, T. Yoshida, Thermoelectric properties of SiC thick films deposited by thermal plasma physical vapor deposition, Sci. Technol. Adv. Mat. 4 (2003) 167.

DOI: 10.1016/s1468-6996(03)00015-9

Google Scholar