Surface Phase Diagram of 4H-SiC {0001} Step-Terrace Structures during Si-Vapor Etching in a TaC Crucible

Article Preview

Abstract:

Step-terrace structures were observed at on-axis/4o off 4H-SiC {0001} surfaces after Si-vapor etching which we have been supposed as an original technique to planarize and etch the SiC surfaces by utilizing a TaC crucible in temperature ranged from 1600 to 2200 oC. The structures obtained after the Si-vapor etching obviously indicated temperature dependence. There were two types of step-terrace structures in terms of the step height and the shape of the step edges at on-axis surfaces. Step bunched surfaces consisting of full unit cell height (= 1.0 nm) steps with {1-10n} facets at the step edges were observed at 4H-SiC (0001) in lower temperatures below 2000 oC, while smooth isotropic surfaces with half unit cell height (= 0.5 nm) steps and without any stable facets at the step edges were observed at 4H-SiC (0001) in higher temperatures above 2000 oC and in all temperature conditions (1600 - 2200 oC) at 4H-SiC (000-1). Similar tendency was also confirmed at 4o off 4H-SiC {0001} surfaces. From the comparison with 6H-SiC, macro step bunching (~10 nm height) was revealed to be a unique phenomenon at 4H-SiC (0001) surface in the etching.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 717-720)

Pages:

573-576

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Robinson, X. Weng, K. Trumbull, R. Cavalero, M. Wetherington, E. Frantz, M. LaBella, Z. Hughes, M. Fanton, and D. Snyder, ACS Nano. 4 (2010) 153.

DOI: 10.1021/nn901248j

Google Scholar

[2] T. Ohta, N. C. Bartelt, S. Nie, K. Thürmer, and G. L. Kellogg, Phys. Rev. B 81 (2010) 121411(R).

Google Scholar

[3] O.J. Guy, M. Lodzinski, K.S. Teng, T.G.G. Maffeis, M. Tan, I. Blackwood, P.R. Dunstan, O. Al-Hartomy, S. P. Wilks, T. Wilby, N. Rimmer, D. Lewis, and J. Hopkins, Appl. Sur. Sci. 254 (2008) 8098.

DOI: 10.1016/j.apsusc.2008.03.056

Google Scholar

[4] G. Younes, G. Ferro, C. Jacquier, J. Dazord, and Y. Monteil, Appl. Surf. Sci. 207 (2003) 200.

Google Scholar

[5] S. Nakamura, T. Kimoto, H. Matsunami, S. Tanaka, N. Teraguchi, and Akira Suzuki, Appl. Phys. Lett. 76 (2000) 3412.

Google Scholar

[6] S. Soubatch, S.E. Saddow, S.P. Rao, W.Y. Lee, M. Konuma, and U. Starke, Mater. Sci. Forum 483-485 (2005) 761.

DOI: 10.4028/www.scientific.net/msf.483-485.761

Google Scholar

[7] A. Nakajima, H. Yokoya, Y. Furukawa, and H. Yonezu, J. Appl. Phys. 97 (2005) 104919.

Google Scholar

[8] F. J. Ferrer, E. Moreau, D. Vignaud, S. Godey, and X. Wallart, Semicond. Sci. Technol. 24 (2009) 125014.

DOI: 10.1088/0268-1242/24/12/125014

Google Scholar

[9] S. Ushio, A. Yoshii, N. Tamai, N. Ohtani, and T. Kaneko, Phys. Status Solidi C 8 (2011) 580.

Google Scholar

[10] S. Ushio, A. Adachi, K. Matsuda, N. Ohtani, and T. Kaneko, Mater. Sci. Forum, 679-680 (2011) 777.

Google Scholar