GaAs Nanowires: A New Place to Explore Polytype Physics

Article Preview

Abstract:

Recently, polytypism has been observed in nanowires in materials, for which normally only one crystal structure is stable. For example, GaAs, nanowires can have wurtzite or mixed zincblende/wurtzite. Here we provide band structure parameters for wurzite and 4H GaAs and use them for modeling the nanowire electronic states. The band gap, crystal field splitting, and its strain dependence, as well as the effective mass parameters are calculated using the quasiparticle self-consistent GW method. The nanowire electronic states are obtained in the envelope function approximation within a simplified cylindrical model. The crystal field splitting of the wurtzite GaAs valence band is found to be 180 meV while in 4H-GaAs it is less than half 69 meV, suggesting a downward bowing as function of hexagonality. The conduction band minimum at Γ changes symmetry character under strain. We discuss the consequences for nanowires and determine the conditions under which a polarization reversal of photoluminescence can occur from mostly perpendicular to parallel to the wire.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 717-720)

Pages:

565-568

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Spirkoska, J. Arbiol, A. Gustafsson, S. Conesa-Boj, F. Glas, I. Zardo, M. Heigoldt, M. H. Gass, A. L. Bleloch, S. Estrade, M. Kaniber, J. Rossler, F. Peiro, J. R. Morante, G. Abstreiter, L. Samuelson, and A. Fontcuberta i Morral, Phys. Rev. B 80 (2009) 245325.

DOI: 10.1103/physrevb.80.245325

Google Scholar

[2] I. Zardo, S. Conesa-Boj, F. Peiro, J. R. Morante, J. Arbiol, E. Uccelli, G. Abstreiter, and A. Fontcuberta i Morral, Phys. Rev. B 80 (2009) 245324.

DOI: 10.1103/physrevb.80.245324

Google Scholar

[3] M. Heiss, S. Conesa-Boj, J. Ren, H.-H. Tseng, A. Gali, A. Rudolph, E. Uccelli, F. Peiró, J. R. Morante, D. Schuh, E. Reiger, E. Kaxiras, J. Arbiol, and A. Fontcuberta i Morral, Phys. Rev. B 83 (2011) 045303.

DOI: 10.1103/physrevb.83.045303

Google Scholar

[4] Peter C. Sercel and Kerry J. Vahala, Phys. Rev. B 42 (1990) 3690.

Google Scholar

[5] Tawinan Cheiwchanchamnangij and Walter R. L. Lambrecht, Phys. Rev. B 84 (2011) 035203.

Google Scholar

[6] T. Kotani, M. van Schilfgaarde, and S. V. Faleev, Phys. Rev. B 76 (2007) 165106.

Google Scholar

[7] M. van Schilfgaarde, T. Kotani, and S. Faleev, Phys. Rev. Lett. 96 (2006) 226402.

Google Scholar

[8] M. Methfessel, M. van Schilfgaarde, and R. A. Casali, in Electronic Structure and Physical Properties of Solids. The Use of the LMTO Method, Lecture Notes in Physics, edited by H. Dreyssé (Springer, Berlin, 2000), Vol. 535, p.114.

DOI: 10.1007/3-540-46437-9_3

Google Scholar

[9] P. Grivickas, M. D. McCluskey, and Y. M. Gupta, Phys. Rev. B 80 (2009) 073201.

Google Scholar

[10] A. De and C. E. Pryor, Phys. Rev. B 81 (2010) 155210.

Google Scholar

[11] Z. Zanolli, F. Fuchs, J. Furthmüller, U. von Barth, and F. Bechstedt, Phys. Rev. B 75 (2007) 245121.

Google Scholar

[12] D. Spirkoska, Al. L. Efros, W. R. Lambrecht, T. Cheiwchanchamnangij, A. Fontcuberta i Morral, and G. Abstreiter, submitted to Phys. Rev. B (2011).

DOI: 10.1103/physrevb.85.045309

Google Scholar