Graphene on Carbon-Face SiС{0001} Surfaces Formed in a Disilane Environment

Article Preview

Abstract:

The formation of epitaxial graphene on SiC(000-1) in a disilane environment is studied. The higher graphitization temperature required, compared to formation in vacuum, results in more homogeneous thin films of graphene. Some areas of the surface display unique electron reflectivity curves not seen in vacuum-prepared samples. Using selected area diffraction, these areas are found to have a graphene/SiC interface structure with a graphene-like buffer layer [analogous to what occurs on SiC(0001) surfaces].

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 717-720)

Pages:

609-612

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Hass, W. A. de Heer, and E. H. Conrad: J. Phys.: Condens. Matter Vol. 20 (2008), p.323202

Google Scholar

[2] C. Virojanadara, M. Syväjarvi, R. Yakimova, L. I. Johansson, A. A. Zakharov, and T. Balasubramanian: Phys. Rev. B Vol. 78 (2008), p.245403

Google Scholar

[3] K. V. Emtsev et al.: Nat. Mat. Vol. 8 (2009), p.203

Google Scholar

[4] Luxmi, N. Srivastava, R. M. Feenstra, and P. J. Fisher: J. Vac. Sci. Technol. A Vol. 28 (2010), p. C5C1

Google Scholar

[5] R. M. Tromp and J. B. Hannon: Phys. Rev. Lett. Vol. 102 (2009), p.106104

Google Scholar

[6] J. L. Tedesco, G. G. Jernigan, J. C. Culbertson, J. K. Hite, Y. Yang, K. M. Daniels, R. L. Myers-Ward, C. R. Eddy, Jr., J. A. Robinson, K. A. Trumball, M. T. Wetherington, P. M. Campbell, and D. K. Gaskill: Appl. Phys. Lett. Vol. 96 (2009), p.222103

DOI: 10.1063/1.3442903

Google Scholar

[7] Luxmi, N. Srivastava, G. He, R. M. Feenstra, and P. J. Fisher: Phys. Rev. B Vol. 82 (2010), p.235406

Google Scholar

[8] F. Varchon, R. Feng, J. Hass, X. Li, B. Ngoc Nguyen, C. Naud, P. Mallet, J-Y. Veuillen, C. Berger, E. H. Conrad, and L. Magaud: Phys. Rev. Lett. Vol. 99 (2007), p.126805

DOI: 10.1103/physrevlett.99.126805

Google Scholar

[9] K. V. Emtsev, F. Speck, Th. Seyller, L. Ley, and J. D. Riley: Phys. Rev. B Vol. 77 (2008), p.155303

Google Scholar

[10] Luxmi, S. Nie, P. J. Fisher, R. M. Feenstra, G. Gu, and Y. Sun: J. Electron. Mater. Vol. 38 (2009), p.718

Google Scholar

[11] H. Hibino, H. Kageshima, F. Maeda, M. Nagase, Y. Kobayashi and H. Yamaguchi: Phys. Rev. B Vol. 77 (2008), p.075413

Google Scholar

[12] N. Srivastava, G. He, Luxmi, P. C. Mende, R. M. Feenstra, and Y. Sun: submitted to J. Phys. D: Appl. Phys.; arXiv:1109.1224

Google Scholar

[13] N. Srivastava, G. He, and R. M. Feenstra: submitted to Phys. Rev. B; arXiv:1110.6562.

Google Scholar

[14] U. Starke, J. Schardt, J. Bernhardt, and K. Heinz: J. Vac. Sci. Technol. A Vol. 17 (1999), p.1688

Google Scholar

[15] C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke: Phys. Rev. Lett. Vol. 103 (2009), p.246804

Google Scholar

[16] S. Oida, F. R. McFreely, J. B. Hannon, R. M. Tromp, M. Copel, Z. Chen, Y. Sun, D. B. Farmer, and J. Yurkas: Phys. Rev. B Vol. 82 (2010), p.041411

DOI: 10.1103/physrevb.82.041411

Google Scholar

[17] F. Hiebel, P. Mallet, F. Varchon, L. Magaud, and J-Y. Veuillen: Phys. Rev. B Vol. 78 (2008), p.153412

Google Scholar

[18] J. Hass, R. Feng, J. E. Millán-Otoya, X. Li, M. Sprinkle, P. N. First, W. A. de Heer, and E. H. Conrad: Phys. Rev. B Vol. 75 (2007), p.214109

Google Scholar