Electronic and Structural Properties of Turbostratic Epitaxial Graphene on the 6H-SiC (000-1) Surface

Article Preview

Abstract:

We propose an atomistic model to study the interface properties of mis-oriented (turbostratic) epitaxial graphene on SiC (000-1) surface. Using calculations from first principles, we compare the energetics, and structural/electronic properties of AB and turbostratic stacking sequences within a model based on the Si adatom surface reconstruction. Our calculations show that the systems with AB and turbostratic sequences are very close in energy, demonstrating the possibility of the observation of Moire patterns in epitaxial graphene on the C-face of SiC. The two-dimensional electron gas behavior is preserved in the epitaxial turbostratic graphene systems. However, there are deviations from the ideal turbostratic epitaxial graphene.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 717-720)

Pages:

595-600

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306 (2004) 666.

DOI: 10.1126/science.1102896

Google Scholar

[2] Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature (London) 438 (2005) 201.

Google Scholar

[3] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. deHeer, J. Phys. Chem. B 108 (2004) 19912.

DOI: 10.1021/jp040650f

Google Scholar

[4] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, P. Potenmski, and G. Martinez, Solid State Commun. 143 (2007) 92.

DOI: 10.1016/j.ssc.2007.04.023

Google Scholar

[5] A. Mattausch and O. Pankratov, Phys. Rev. Lett. 99 (2007) 076802.

Google Scholar

[6] F. Varchon, R. Feng, J. Hass, X. Li, B. N. Nguyen, C. Naud, P. Mallet, J. Y. Veuillen, C. Berger, E. H. Conrad, and L. Magaud, Phys. Rev. Lett. 99 (2007) 126805.

DOI: 10.1103/physrevlett.99.126805

Google Scholar

[7] T. Jayasekera, B. D. Kong, K. W. Kim, and M. Buongiorno Nardelli, Phys. Rev. Lett. 104 (2010) 146801.

Google Scholar

[8] L. Magaud, F. Hielbel, F. Varchon, P. Mallet, and J. Y. Veullin, Phys. Rev. B 79 (2009) 161405.

Google Scholar

[9] T. Jayasekera, S. Xu, K.W. Kim, and M. Buongiorno Nardelli, Phys. Rev. B 84 (2011) 035442.

Google Scholar

[10] J. Hass, W. A. de Heer, and E. H. Conrad, J. Phys.: Condens. Matter 20 (2008) 323202.

Google Scholar

[11] C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, M. Sprinkle, J. Hass, F. Varchon, L. Magaud, M. Sadowski, M. Potemski, G. Martinez, and W. A. de Heer, Adv. Solid State Phys. 47 (2008) 145.

DOI: 10.1007/978-3-540-74325-5_12

Google Scholar

[12] W. A. de Heer, C. Berger, X. Wu, M. Sprinkle, Y. Hu, M. Ruan, J. A. Storscio, P. N. First, R. Haddon, B. Piot, C. Faugeras. M. Potemski, and J. S. Moon, J. Phys. D: Appl. Phys. 43 (2010) 374007.

DOI: 10.1088/0022-3727/43/37/374007

Google Scholar

[13] K. V. Emtsev, F. Speck, Th. Seyller, L. Ley, and J. D. Riley, Phys. Rev. B 77 (2008) 155303.

Google Scholar

[14] J. Hass, F. Varchon, J. E. Millian-Otoya, M. Sprinkle, N. Sharma, W. A. de Heer, C. Berger, P. N. First, L. Magaud, and E. H. Conrad, Phys. Rev. Lett. 100 (2008) 125504.

Google Scholar

[15] A. Seubert, J. Bernhardt, M. Nerding, U. Starke, and K. Heinz, Surf. Sci. 45 (2000) 454.

Google Scholar

[16] S. Latil, V. Meunier, and L. Henrard, Phys. Rev. B 76 (2007) 201402.

Google Scholar

[17] A. N. Kolmogorov and V. H. Crespi, Phys. Rev. B 71 (2005) 235415.

Google Scholar

[18] P. Giannozzi et al., J. Phys:. Condens Matter 21 (2009) 395502.

Google Scholar

[19] S. Grimme, J. Comput. Chem. 25 (2004) 1463.

Google Scholar

[20] V. Barone, M. Casarin, D. Forrer, M. Pavone, M. Sambi, and A. Vittadini, J. Comput. Chem. 30 (2009) 934.

DOI: 10.1002/jcc.21112

Google Scholar