Combinatorial Synthesis Study of Passivation Layers for Solar Cell Applications

Article Preview

Abstract:

We investigated the new materials applicable for the field effect passivation layer in crystalline Si solar cells, ZrO2-Al2O3 and ZrO2-Y2O3 binary systems, by using combinatorial synthesis method. As-deposited samples indicated hysteresis curves and flat band-voltage (VFB) shifts at capacitance-voltage (C-V) measurements. After oxygen gas annealing (OGA) at 700 oC for 5min, an improvement of the hysteresis and a positive shift of VFB were observed. OGA process influenced defects density related to decreasing oxygen vacancy. OGA processed ZrO2 incorporated with 20 % Al2O3 and 15 % Y2O3 structures showed the maximized negative fixed charge of -5.8 × 1012 cm-2 and -7.8 × 1012 cm-2 in each system, respectively, suggesting that the ZrO2 based alloy systems were revealed to be the promising material for the passivation in the solar cell application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

161-164

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys. Lett., 89, 042112 (2006).

DOI: 10.1063/1.2240736

Google Scholar

[2] B. Hoex, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys., 104, 113703 (2008).

Google Scholar

[3] S. Miyajima, J. Irikawa, A. Yamada, and M. Konagai, Appl. Phys. Express., 3, 012301 (2010)

Google Scholar

[4] T. T. Li and A. Cuevas, Phys. Status Solidi: Rapid Res. Lett., 3(5), 161 (2009).

Google Scholar

[5] T. Tachibana, T. Sameshima, Y. Iwashita, Y. Kiyota, T. Chikyow, H. Yoshida, K. Arafune, S. Satoh, and A. Ogura, Jpn. J, Appl. Phys., 50, 04DP09 (2011).

DOI: 10.7567/jjap.50.04dp09

Google Scholar

[6] K. Hasegawa, P. Ahmet, N. Okazaki, T. Hasegawa, K. Fujimoto, M. Watanabe, T. Chikyow, and H. Koinuma, Appl. Surf. Sci., 223, 229 (2004).

DOI: 10.1016/s0169-4332(03)00903-6

Google Scholar

[7] MOS Physics and Technology, by E. H Nicollian and J. R. Brews (Jonh Wiley & Sons, Inc. 2003).

Google Scholar

[8] V. K. Gueorguiev, P. V. Aleksandrova, T. E. Ivanov, and J. B. Koprinarova, Thin Solid Films, 517,1815 (2009).

DOI: 10.1016/j.tsf.2008.10.010

Google Scholar

[9] W.J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Jeon, and J. C. Lee, Appl. Phys. Lett., 70(2), 3269 (2000).

Google Scholar

[10] S. Stemmer, Z. Chen, R. Keding, J.-P. Maria, D. Wicaksana, and A. I. Kingon, J. Appl. Phys., 92(1), 82 (2004).

Google Scholar

[11] C. Choi, K. L. Lee, and V. Narayanan, Appl. Phys. Lett., 98, 123506 (2011).

Google Scholar

[12] K. Tse, D. Liu, K. Xiong, and J. Robertson, Microelectron. Eng., 84, 2028 (2007).

Google Scholar

[13] B. Butz, P. Kruse, H. Störmer, D. Gerthsen, A. Müller, A. Weber, and E. I. Tiffée, Solid State Ionics, 177, 3275 (2006).

Google Scholar

[14] S. Horita, M. Watanabe, and A. Masuda, Mater. Sci. Eng. B, 54, 79 (1998).

Google Scholar