Bipolar Conduction across a Wafer Bonded p-n Si/SiC Heterojunction

Article Preview

Abstract:

This paper describes the physical and electrical properties of a p-n Si/on-axis SiC vertical heterojunction rectifier. A thin 400nm p-type silicon layer was wafer-bonded to a commercial on-axis SiC substrate by room temperature hydrophilic wafer bonding. Transmission electron microscopy was used to identify the crystallographic orientation as (0001)SiC//(001)Si and to reveal an amorphous interfacial layer. Electrical tests performed on the p-n heterodiodes revealed that, after an additional 1000oC anneal, the rectifier exhibit remarkably low leakage current (10nA/cm2 at an anode voltage of V=-6V), improved on-resistance due to bipolar injection and a turn-on voltage close to the p-n heterojunction theoretical value of 2.4V.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 740-742)

Pages:

1006-1009

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Shinohara, H. Kinoshita, and M. Yoshimoto, Appl. Phys. Lett. 93, 122110 (2008)

Google Scholar

[2] M. R. Jennings, A. Pérez-Tomás, O. J. Guy, R. Hammond, S. E. Burrows, P. M. Gammon, M. Lodzinski, J. A. Covington, and P. A. Mawby, Electrochem. Solid-State Lett. 11 H306 (2008).

DOI: 10.1149/1.2976158

Google Scholar

[3] A. Pérez-Tomás, M. R. Jennings, M. Davis, J. A. Covington, and P. A. Mawby, V. Shah and T. Grasby, Microelectronics Journal, 38, 1233 (2007).

DOI: 10.1016/j.mejo.2007.09.019

Google Scholar

[4] P. M. Gammon, A. Pérez-Tomás, V. A. Shah, G. J. Roberts, M. R. Jennings, J. A. Covington, and P. A. Mawby, J. Appl. Phys. 106, 093708 (2009)

Google Scholar

[5] B. J. Johnson and M. A. Capano, J. Appl. Phys. 95, 5616 (2004).

Google Scholar

[6] Q. Zhang, C. Jonas, R. Callahan, J. Sumakeris, M. Das, A. Agarwal, J. Palmour, S.-H. Ryu, J. Wang, and A. Huang, in ISPSD, 2007, pp.303-306.

Google Scholar

[7] H. Jacobson, J. P. Bergman, C. Hallin, E Janźen, T. Tuomi and H. Lendenmann, J. Appl. Phys. 95, 1485 (2004).

Google Scholar

[8] J. Zhang, X. Li, P. Alexandrov, L. Fursin, X. Wang, and J.H. Zhao, IEEE Trans. Electron Devices, 55, 1899 (2008).

Google Scholar

[9] S. Leone, F. C. Beyer, H. Pedersen, O. Kordina, A. Henry, and E. Janźen, Crystal Growth & Design, 10, 5335 (2010).

Google Scholar

[10] Bart V Van Zeghbroeck, Principles of Semiconductor Devices and Heterojunctions, Prentice Hall, (2009). ISBN-10: 0130409049.

Google Scholar

[11] T. P. Chow, V. Khemka, J. Fedison, N. Ramungul, K. Matocha, Y. Tang and R.J. Gutmann Solid-State Electron. 44, 277 (2000).

DOI: 10.1016/s0038-1101(99)00235-x

Google Scholar

[12] C. Sah, R. N. Noyce, and W. Schockley, Proc. IRE 45, 1228 (1957).

Google Scholar

[13] P. M. Gammon, A. Pérez-Tomás, M. R. Jennings, V. A. Shah, S. A. Boden, M. C. Davis, S. E. Burrows, N. R. Wilson, G. J. Roberts, J. A. Covington, and P. A. Mawby, J. Appl. Phys., 107, 124512 (2010).

DOI: 10.1063/1.3449057

Google Scholar

[14] J. H. He and C. H. Ho, Appl. Phys. Lett. 91, 233105 (2007).

Google Scholar