Polytype Inclusions in Cubic Silicon Carbide

Article Preview

Abstract:

The 3C-SiC layers on nominally on-axis 6H-SiC substrates were grown using sublimation epitaxy. More than 90% coverage by 3C-SiC is typically achieved at growth temperature of 1775°C. The main reason for the polytype inclusions to appear is local supersaturation non-uniformities over the sample surface which appear due to the temperature gradient and spiral growth nature of 6H-SiC. On the 6H-SiC spirals with small steps supersaturation is smaller and 3C-SiC nucleation and growth is diminished. Due to surface free energy and surface diffusion differences, polytype inclusions appear differently when 3C-SiC is grown on the Si- and C-faces. The 6H-SiC inclusions as well as twin boundaries act as neutral scattering centers and lower charge carrier mobility.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 740-742)

Pages:

335-338

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Qteish, V. Heine, R.J. Needs, Phys. Rev. B 45 (1992) 6534.

Google Scholar

[2] K.M. Speer, D.J. Spry, A.J. Trunek, P.G. Neudeck, M.A. Crimp, J.T. Hile, C. Burda, P. Pirouz, Mat. Sci. Forum 556-557 (2007) 223.

DOI: 10.4028/www.scientific.net/msf.556-557.223

Google Scholar

[3] S.E. Saddow, C.L. Frewin, C. Coletti, N. Schettini, E. Weeber, A. Oliveros, M. Jarosezski, Mater. Sci. Forum 679-680 (2011) 824.

DOI: 10.4028/www.scientific.net/msf.679-680.824

Google Scholar

[4] A.A. Lebedev, Semicond. Sci. Technol. 21 (2006) R17.

Google Scholar

[5] H. Nagasawa, K. Yagi, T. Kawahara, N. Hatta, Chem. Vap. Deposition 12 (2006) 502-508.

DOI: 10.1002/cvde.200506466

Google Scholar

[6] D. Chaussende, J. Eid, F. Mercier, R. Madar, M. Pons, Mater. Sci. Forum 615-617 (2009) 31-36.

DOI: 10.4028/www.scientific.net/msf.615-617.31

Google Scholar

[7] M. Soueidan, G. Ferro, Adv. Funct. Mater. 16 (2006) 975-979.

Google Scholar

[8] R. Vasiliauskas, M. Marinova, M. Syväjärvi, R. Liljedahl, G. Zoulis, J. Lorenzzi, G. Ferro, S. Juillaguet, J. Camassel, E.K. Polychroniadis, R. Yakimova J. Cryst. Growth 324 (2011) 7–14.

DOI: 10.1016/j.jcrysgro.2011.03.024

Google Scholar

[9] K. Seki, Alexander; S. Kozawa, T. Ujihara, P. Chaudouet, D. Chaussende, Y. Takeda, J. Cryst. Growth 335 (2011) 94.

Google Scholar

[10] T. Kimoto, A. Itoh, H. Matsunami, Appl. Phys. Lett. 66 (1995) 3645.

Google Scholar

[11] R. Vasiliauskas, M. Marinova, P. Hens, P. Wellmann, M. Syväjärvi, R. Yakimova Cryst. Growth Des., 12 (2012) 197−204.

DOI: 10.1021/cg200929r

Google Scholar

[12] R. Vasiliauskas, S. Juillaguet, M. Syväjävi and R. Yakimova, J. Cryst. Growth, 348 (2012) 91–6.

Google Scholar

[13] R. Vasiliauskas, A. Mekys, P. Malinovskis, S. Juillaguet, M. Syväjävi, J. Storasta and R. Yakimova, J. Phys. D: Appl. Phys. 45 (2012) 225102.

DOI: 10.1088/0022-3727/45/22/225102

Google Scholar

[14] J. Lu, M.V.S. Chandrashekhar, J.J. Parks, D.C. Ralph and M.G. Spencer, Appl. Phys. Lett. 94 (2009) 162115.

Google Scholar

[15] R. Vasiliauskas, A. Mekys, P. Malinovskis, M. Syväjärvi, J. Storasta, R. Yakimova, Mater. Lett. 74 (2012) 203–205.

DOI: 10.1016/j.matlet.2012.01.120

Google Scholar

[16] A.A. Lebedev, P.L. Abramov, S.P. Lebedev, G.A. Oganesyan, A.S. Tregubova, D.V. Shamshur, Phys. B 404 (2009) 4758-60

Google Scholar