Effect of Interface Native Oxide Layer on the Properties of Annealed Ni/SiC Contacts

Article Preview

Abstract:

The near-SiC-interfaces of annealed Ni/SiC contacts were observed directly by high-resolution transmission electron microscopy (HRTEM). 1 nm native oxide layer was observed in the as-deposited contact interface. The native oxide layer cannot be removed at 650°C through rapid thermal annealing (RTA) and it was completely removed at 1000°C RTA. The residue of native oxide layer resulted in the Schottky characters. High temperature annealing (>950°C) not only removes the oxide layer in the near-SiC-interface, but also forms a well arranged flat Ni2Si/SiC interface, which contribute to the formation of ohmic behavior.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 740-742)

Pages:

485-489

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. B. Casady, and R. W. Johnson, Solid-State Electron. 39 (1996) 1409-1422.

Google Scholar

[2] C. Codreanu, M. Avram, E. Carbunescu, and E. Iliescu, Mater. Sci. Semicond. Process. 3 (2000) 137-142.

Google Scholar

[3] Q. Zhang, V. Madangarli, and T. S. Sudarshan, Solid-State Electron. 45 (2001) 1085-1089.

Google Scholar

[4] H. Hjelmgren, K. Andersson, J. Eriksson, P. A. Nilsson, M. Sudow, and N. Rorsman, Solid-State Electron. 51 (2007) 1144-1152.

Google Scholar

[5] K. S. Kelkar, N. E. Islam, C. M. Fessler, and W. C. Nunnally, J. Appl. Phys. 100 (2005) 124905.

Google Scholar

[6] I. Koch, and W. R. Canders, Silicon Carbide and Related Materials, 615-617 (2009) 907-910.

Google Scholar

[7] G. Walden, T. McNutt, M. Sherwin, S. Van Campen, R. Singh, and R. Howell, Silicon Carbide and Related Materials, 600-603 (2009) 1139-1142.

DOI: 10.4028/www.scientific.net/msf.600-603.1139

Google Scholar

[8] M. H. Ervin, K. A. Jones, U. Lee, and M. C. Wood, J. Vac. Sci. Technol. B 24 (2006) 1185-1189.

Google Scholar

[9] I. P. Nikitina, K. V. Vassilevski, N. G. Wright, A. B. Horsfall, A. G. O'Neill, and C. M. Johnson, J. Appl. Phys. 97 (2005) 083709.

Google Scholar

[10] S. Ferrero, A. Albonico, U. M. Meotto, G. Rombola, S. Porro, F. Giorgis, D. Perrone, L. Scaltrito, E. Bontempi, L. E. Depero, G. Richieri, and L. Merlin, Silicon Carbide and Related Materials, 483 (2005) 733-736.

Google Scholar

[11] F. La Via, F. Roccaforte, V. Raineri, M. Mauceri, A. Ruggiero, P. Musumeci, L. Calcagno, A. Castaldini, and A. Cavallini, Microelectron. Eng. 70 (2003) 519-523.

DOI: 10.1016/s0167-9317(03)00464-7

Google Scholar

[12] Y. Cao, L. Nyborg, U. Jelvestam, and D. Q. Yi, Appl. Surf. Sci. 241 (2005) 392-402.

Google Scholar

[13] J. W. Lee, B. Angadi, H. C. Park, D. H. Park, J. W. Choi, W. K. Choi, and T. W. Kim, J. Electrochem. Soc. 154 (2007) 849-852.

Google Scholar

[14] J. H. Park, and P. H. Holloway, J. Vac. Sci. Technol. B 23 (2005) 2530-2537.

Google Scholar

[15] F. A. Mohammad, Y. Cao, and L. M. Porter, Appl. Phys. Lett. 87 (2005) 161908.

Google Scholar

[16] W. Huang, S. H. Chang, X. C. Liu, B. Shi, T. Y. Zhou, X. Liu, C. F. Yan, Y. Q. Zheng, J. H. Yang, E. W. Shi, W. H. Zhang, and J. F. Zhu, Appl. Phys. Express. 5 (2012) 105802.

Google Scholar

[17] Y. Cao, L. Nyborg, and U. Jelvestam, Surf. Interface Anal. 41 (2009) 471-483.

Google Scholar

[18] Y. Cao, and L. Nyborg, Surf. Interface Anal. 38 (2006) 748-751.

Google Scholar

[19] T. Zheleva, A. Lelis, G. Duscher, F. Liu, I. Levin, and M. Das, Appl. Phys. Lett. 93 (2008) 022108.

DOI: 10.1063/1.2949081

Google Scholar

[20] P. Deak, J. M. Knaup, T. Hornos, C. Thill, A. Gali, and T. Frauenheim, J. Phys. D-Appl. Phys. 40, (2007) 6242-6253.

DOI: 10.1088/0022-3727/40/20/s09

Google Scholar