The Study of the Geometry and Growth Trend of Silicon Carbide Crystals

Article Preview

Abstract:

The study compared the influences of silicon materials from different sources on the crystal growth process and geometry of silicon carbide (SiC). As revealed by the results of the study, although the purity of commercial silicon material was as high as 11N, the rate of crystal growth was slow. However, if the silicon material made by electron beam refining metallurgical silicon was utilized for the SiC crystal growth experiment, the morphology of SiC crystal was better and the rate of crystal growth was faster despite its purity being only about 4.5N.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 740-742)

Pages:

56-59

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Kamei, K. Kusunoki, N. Yashiro, N. Okada, K. Moriguchi, H. Daikoku, M. Kado, H. Suzuki, H. Sakamoto, T. Bessho; Mater. Sci. Forum, V. 717-720, pp.45-48, (2012).

DOI: 10.4028/www.scientific.net/msf.717-720.45

Google Scholar

[2] B.M. Epelbaum; J. Cryst. Growth, V. 225, I. 1, pp.1-5, (2001).

Google Scholar

[3] R. Yakimova, M. Tuominen, A.S. ZBakin, J.O. Fornell, A. Vehanen and E. Janzen; Inst. Phys. Conf. Ser. 142, p.101, (1996).

Google Scholar

[4] K. Gillessen and W.V. Munch; Mater. Sci. Forum, V. 33,V. 645-648, p.33, (2010).

Google Scholar

[5] M.A. Capano, B.C. Kim, A.R. Smith, E.P. Kvam, S. Tsoi, A.K. Ramdas; J. Appl. Phys., V. 100, I. 8, pp.083514-1.

Google Scholar

[6] A. Itoh and H. Matsunami; Phys. Stat. Sol. (a) 162, p.389, (1997).

Google Scholar

[7] H. Nagasawa and K. Yagi; Phys. Stat. Sol. (b) 202, p.335, (1997).

Google Scholar

[8] W.E. Knippenberg; Philips Res. Repts. V. 18 , p. L625, (1963).

Google Scholar

[9] F.J. Fong, S. Tsao, W.P. Tu, M.Y. Sung; CSSC4, p.41, (2010).

Google Scholar

[10] V. Remigijus, M. Marinova, P. Hens, P. Wellmann, M. Syväjärvi, R. Yakimova; Cryst. Growth Des., V. 12, I. 1, pp.197-204, (2012).

Google Scholar

[11] K. Seki, Alexander, S. Kozawa, T. Ujihara, P. Chaudouët, S. Chaussende, Y. Takeda ; J. Cryst. Growth, V. 335, I. 1, pp.94-99, (2011).

DOI: 10.1016/j.jcrysgro.2011.09.004

Google Scholar

[12] N.S. Savkina, V.V. Ratnikov, V.B. Shuman, A.A. Lebedev; Mater. Sci. Forum, V. 353-356, I. 2001, pp.119-122, (2001).

Google Scholar

[13] M. Marinova, F. Mercier, A. Mantzari, I. Galben, D. Chaussende, E.K. Polychroniadis; Phys B Condens Matter, V. 404, I. 23-24, pp.4749-4751, (2009).

DOI: 10.1016/j.physb.2009.08.190

Google Scholar

[14] S.G. Stanciu, D. Coltuc, GA. Stanciu, A. Andreadou, A. Mantzari, E.K. Polychroniadis, E.K.; Int. Conf. Transparent Opt. Networks, WeP. 26, (2011).

DOI: 10.1109/icton.2011.5971181

Google Scholar

[15] J. Wasyluk, T.S. Perova, S.A. Kukushkin, A.V. Osipov, N.A. Feoktistov, S.A. Grudinkin; Mat. Sci. Forum, V. 645-648, pp.359-362, (2010).

DOI: 10.4028/www.scientific.net/msf.645-648.359

Google Scholar

[16] K. Seki, Alexander, S. Kozawa, S. Harada, T. Ujihara, Y. Takeda; J. Cryst. Growth, in press/10. 1016/j. jcrysgro. 2011. 11. 041, (2012).

Google Scholar

[17] T. Ujihara, R. Maekawa, R. Tanaka, K. Sasaki, K. Kuroda and Y. Takeda; Mat. Sci. Forum., V. 600, pp.63-66, (2009).

Google Scholar

[18] N. Piluso, A. Severino, M. Camarda, A. Canino, A. La Magna and F. La Via; Appl. Phys. Lett., 97, p.142103, (2010).

DOI: 10.1063/1.3495997

Google Scholar

[19] K. Seki, R. Tanaka, T. Ujihara, Y. Takeda; Mat. Sci. Forum, V. 615-617, pp.27-30, (2008).

Google Scholar

[20] R. Hattori, K. Kamei, K. Kusunoki, N. Yashiro, S. Shimosaki,; Mater. Sci. Forum, V. 615-617, pp.141-144, (2009).

DOI: 10.4028/www.scientific.net/msf.615-617.141

Google Scholar