Effects of a Post-Oxidation Annealing in Nitrous Oxide on the Morphological and Electrical Properties of SiO2/4H-SiC Interfaces

Article Preview

Abstract:

This work reports on the morphological, structural and electrical effects of a nitrous oxide (N2O) ambient post-oxidation annealing (POA) of the SiO2/4H-SiC interface. In particular, a conventional electrical characterization of MOS capacitors showed that nitrous oxide POA reduces the presence of both fixed oxide charge and the density of interface states. A local atomically flat interface was observed by transmission electron microscopy with only a moderate step bunching observed at a macroscopic scale. A novel nanoscale characterization approach via scanning spreading resistance microscopy resolved local electrical changes induced at the SiC surface exposed to N2O POA. This result subsequently revealed additional insight into the mechanism for the improved device performance subjected to N2O POA treatment.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 740-742)

Pages:

715-718

Citation:

Online since:

January 2013

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.V. Afanas'ev, F. Ciobanu, S. Dimitrijev, G. Pensl, A. Stesmans, J. Phys.: Condens. Matter 16, S1839–S1856 (2004).

DOI: 10.1088/0953-8984/16/17/019

Google Scholar

[2] F. Ciobanu, G. Pensl, V.V. Afanas'ev, A. Schöner, Mater. Sci. Forum, 483-485, 693 (2005).

Google Scholar

[3] M. Shur, S. Rumyanstev, M. Levinshtein, SiC Materials and Devices, Singapore, World Scientific, Vol. 1, 2006.

Google Scholar

[4] F. Roccaforte, F. Giannazzo, V. Raineri, J. Phys. D: Appl. Phys. 43, 223001 (2010).

Google Scholar

[5] Y. Wang, T. Khan, M.K. Balasubramanian, H. Naik, W. Wang and T. Paul Chow, IEEE Trans. Electron Devices, 55, 2046 (2008).

Google Scholar

[6] S.-H. Ryu, S. Dhar, S. Haney, A. Agarwal, A. Lelis, B. Geil, C. Scozzie, Mater. Sci. Forum 615-617, 743 (2009).

DOI: 10.4028/www.scientific.net/msf.615-617.743

Google Scholar

[7] T.L. Biggerstaff, C.L. Reynolds, T. Zheleva, A. Lelis, D. Habersat, S. Haney, S.-H. Rryu, A. Agarwal, G. Duscher, Appl. Phys. Lett. 95, 032108 (2009).

DOI: 10.1063/1.3144272

Google Scholar

[8] J. Rozen, A. C. Ahyi, X. Zhu, J. R. Williams, L. C. Feldman, IEEE Electron Dev. Lett. 58, 3808, (2010).

Google Scholar

[9] F. Allerstam, G. Gudjönsson, H. Ö. Ólafsson, E. Ö. Sveinbjörnsson, T. Rödle, R. Jos, Semiconductor Sci. Technol. 22, 307 (2007).

DOI: 10.1088/0268-1242/22/4/002

Google Scholar

[10] D. Okamoto, H. Yano, K. Hirata, T. Hatayama, T. Fuyuki; IEEE Electron Dev. Lett. 31, 710, (2010).

Google Scholar

[11] K. McDonald, R. A. Weller, S. T. Pantelides, L. C. Feldman, G. Y. Chung, C. C. Tin, J. R. Williams, J. Appl. Phys. 93, 2719 (2003).

Google Scholar

[12] M. Losurdo, M. M. Giangregorio, G. Bruno, A. Brown, T-H. Kim, Appl. Phys. Lett. 85, 4034 (2004).

Google Scholar

[13] T. Umeda, K. Esaki, R. Kosugi, K. Fukuda, T. Ohshima, N. Morishita, and J. Isoya, Appl. Phys. Lett. Vol. 99, 142105 (2011).

DOI: 10.1063/1.3644156

Google Scholar

[14] R. Kosugi, T. Umeda, and Y. Sakuma, Appl. Phys. Lett. Vol. 99, 182111 (2011).

Google Scholar

[15] D.K. Schroder, Semiconductor Material and Device Characterization, Third Edition, John Wiley and Sons, Hoboken, New Jersey, 2006.

Google Scholar

[16] A. Frazzetto, F. Giannazzo, P. Fiorenza, V. Raineri, F. Roccaforte, Appl. Phys. Lett. 99, 072117 (2011).

DOI: 10.1063/1.3665121

Google Scholar