p.95
p.99
p.103
p.109
p.113
p.117
p.121
p.125
p.131
Latest SiC Epitaxial Layer Growth Results in a High-Throughput 6×150 mm Warm-Wall Planetary Reactor
Abstract:
Latest results are presented for SiC-epitaxial growths employing a novel 6x150-mm/10x100-mm Warm-Wall Planetary Vapor-Phase Epitaxial (VPE) Reactor. The increased throughput offered by this reactor and 150-mm diameter wafers, is intended to reduce the cost per unit area for SiC epitaxial layers, increasing the market penetration of already successful commercial SiC Schottky and MOSFET devices [1]. Increased growth rates of 30-40 micron/hr and short <2 hr fixed-cycle times (including rapid heat-up and cool-down ramps), while maintaining desirable epitaxial layer quality were achieved. Increased quantities of 150-mm epitaxial wafers now allow statistical analysis of their epitaxial layer properties. Specular epitaxial layer morphology was obtained, with morphological defect densities <0.4 cm-2, consistent with projected 5x5 mm die yields averaging 93% for Si-face epitaxial layers between 10 and 30 microns thick. Intrawafer thickness and doping uniformity are good, averaging 1.7% and 5.1% respectively. Wafer-to-wafer doping variation has also been significantly reduced from ~12 [5] to <3% s/mean. Initial results for C-face growths show excellent morphology (97%) but poor doping uniformity (~16%). Wafer shape is relatively unchanged by epitaxial growth consistent with good epitaxial temperature uniformity.
Info:
Periodical:
Pages:
113-116
Citation:
Online since:
February 2014
Authors:
Keywords:
Price:
Сopyright:
© 2014 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: