Solid Phase Growth of Graphene on Silicon Carbide by Nickel Silicidation: Graphene Formation Mechanisms

Article Preview

Abstract:

This work presents experimental evidence of the formation mechanisms of few-layer graphene (FLG) films on SiC by nickel silicidation. FLG is formed by annealing of a 40 nm thick Ni layer on 6H-SiC at 1035ºC for 60 s, resulting in a Ni2Si layer which may be capped by any Ni that did not react during annealing. It has been proposed that FLG forms on top of the Ni during the high temperature stage. In contrast, during cooling, carbon atoms which were released during the silicidation reaction may diffuse back towards the Ni2Si/SiC interface to form a second FLG film. After annealing, layer-by-layer de-processing was carried out in order to unequivocally identify the FLG at each location using Atomic force microscopy (AFM) and Raman spectroscopy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 778-780)

Pages:

1162-1165

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.S. Novoselov, V.I. Falko, L. Colombo, P.R. Gellert, M.G. Schwab and K. Kim, Nature, 490 (2012) 192-200.

Google Scholar

[2] C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First and W.A. de Heer, J. Phys. Chem. B, 108 (2004) 19912-19916.

DOI: 10.1021/jp040650f

Google Scholar

[3] I.P. Nikitina, K.V. Vassilevski, N.G. Wright, A.B. Horsfall, A.G. O'Neill and C.M. Johnson, J. Appl. Phys., 97 (2005) 083709.

Google Scholar

[4] J.J. Lander, H.E. Kern and A.L. Beach, J. Appl. Phys., 23 (1952) 1305-1309.

Google Scholar

[5] R.C.J. Schiepers, F.J.J. van Loo and G. de With, J. Amer. Ceram. Soc., 71 (1988) C284-C287.

Google Scholar

[6] S.Y. Han, K.H. Kim, J.K. Kim, H.W. Jang, K.H. Lee, N. -K. Kim, E.D. Kim and J. -L. Lee, Appl. Phys. Lett., 79 (2001) 1816-1818.

DOI: 10.1063/1.1404998

Google Scholar

[7] E. Escobedo-Cousin, K. Vassilevski, I.P. Nikitina, N.G. Wright, A.G. O'Neill, A.B. Horsfall and J.P. Goss, Mat. Sci. Forum, 717-720 (2012) 629-632.

DOI: 10.4028/www.scientific.net/msf.717-720.629

Google Scholar

[8] L. Calcagno, E. Zanetti, F. La Via, F. Roccaforte, V. Raineri, S. Libertino, F. Giannazzo, M. Mauceri and P. Musumeci, Mat. Sci. Forum, 433-436 (2003) 721-724.

DOI: 10.4028/www.scientific.net/msf.433-436.721

Google Scholar

[9] E. Escobedo-Cousin, K. Vassilevski, T. Hopf, N. Wright, A. O'Neill, A. Horsfall, J. Goss and P. Cumpson, J. Appl. Phys., 113 (2013) 114309.

DOI: 10.1063/1.4795501

Google Scholar

[10] A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth and A.K. Geim, Phys. Rev. Lett., 97 (2006) 187401.

DOI: 10.1103/physrevlett.97.187401

Google Scholar

[11] M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus and R. Saito, Nano Letters, 10 (2010) 751-758.

DOI: 10.1021/nl904286r

Google Scholar