Influence of Conduction-Type on Thermal Oxidation Rate in SiC(0001) with Various Doping Densities

Article Preview

Abstract:

It was discovered that the oxidation rate for SiC depended on the conduction type. The oxidation was performed for SiC(0001) with nitrogen doping (n-type) in the range from 2×1016 cm-3 to 1×1019 cm-3, and aluminum doping (p-type) in the range from 2×1015 cm-3 to 1×1019 cm-3, exhibiting a clear dependence. For n-type SiC the oxide thickness increases for higher doping density, and for p-type the thickness decreases. Note that in the case of Si oxidation, there exists very little difference of oxidation rate between the conduction types in such low doping density, and the dependence is peculiar to SiC.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 821-823)

Pages:

456-459

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. A. Cooper, Jr., Physica Status Solidi (a) 162, 305 (1997).

Google Scholar

[2] V. V. Afanas'ev, M. Bassler, G. Pensl, and M. Schulz, Physica Status Solidi (a) 162, 321 (1997).

Google Scholar

[3] T. Kimoto, Y. Kanzaki, M. Noborio, H. Kawano, and H. Matsunami. Jpn. J. Appl. Phys. 44, 1213 (2005).

Google Scholar

[4] G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, R. K. Chanana, R. A. Weller, S. T. Pantelides, L. C. Feldman, O. W. Holland, M. K. Das, and J. W. Palmour, IEEE Electron Device Lett. 22, 176 (2001).

DOI: 10.1109/55.915604

Google Scholar

[5] Y. Song, S. Dahr, L. C. Feldman, G. Chung, and J. R. Williams, J. Appl. Phys. 95, 4953 (2004).

Google Scholar

[6] B. E. Deal and A. S. Grove, J. Appl. Phys. 36, 3770 (1965).

Google Scholar

[7] K. Ueno, Physica Status Solidi (a) 162, 299 (1997).

Google Scholar

[8] K. Ueno, and Y. Seki, Jpn. J. Appl. Phys. 33, 1121(1994).

Google Scholar

[9] B. K. Daas, M. M. Islam, I. A. Chowdhury, F. Zhao, T. S. Sudarshan, and M. V. S. Chandrashekhar, IEEE Trans. Electron Devices 58 , 115 (2011).

DOI: 10.1109/ted.2010.2088270

Google Scholar

[10] E. D. Palik, Handbook of Optical Constants of Solids, (Academic Press, 1997).

Google Scholar

[11] B. E. Deal, J. Electrochem. Soc. 110, 527(1963).

Google Scholar

[12] J. R. Ligenza and W. G. Spitzer, J. Phys. Chem. Solids 14, 131(1960).

Google Scholar

[13] R. H. Kikuchi and K. Kita, Appl. Phys. Lett. 104, 052106 (2014).

Google Scholar

[14] S. M. Sze and ‎K. K. Ng, Physics of Semiconductor Devices, 3rd Edition, (John Wiley & Sons, 2007).

Google Scholar

[15] M. Bockstedte, A. Mattausch, and O. Pankratov, Phys. Rev. B 68, 205201 (2003).

Google Scholar