Fabrication of 3C-SiC MOS Capacitors Using High-Temperature Oxidation

Article Preview

Abstract:

A systematic study on the 3C-SiC/SiO2 interface has been done. 3C-SiC epilayers have been grown on a Si (001) substrate. Results obtained from room temperature conductance-voltage (G-V) and hi-low capacitance-voltage (C-V) on n-type 3C-SiC/SiO2 metal-oxide-semiconductor capacitors (MOS-Cs) have been reported using various types of oxides. The oxides used in these studies have been thermally grown at different oxidation temperatures - 1200°C, 1300°C and 1400°C. Also, the interface trap density (Dit) of as-grown MOS-C is compared with nitrided (thermally grown oxide + N2O post-oxidation annealing) oxides. Oxide grown at 1300°C followed by N2O-passivation at the same temperature gives the lowest Dit of 6x1011 cm-2eV-1 at 0.2eV from the conduction band (CB) edge.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 821-823)

Pages:

464-467

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. E. Saddow and A. Agarwal, Advances in Silicon Carbide Processing and Applications (Artech House 2004).

Google Scholar

[2] N. Kaminski et al., IET Circuits Devices Syst. 8, 227 (2014).

Google Scholar

[3] T. Kimoto et al., Phys. Status. Solidi B 245, 1327 (2008).

Google Scholar

[4] Y. K. Sharma et al., Physics of Semiconductor Devices, pp.47-52. Springer International Publishing (2014).

Google Scholar

[5] http: /www. prnewswire. com/news-releases/epitaxial-sic-films-grown-on-300mm-si-wafers-209304461. html.

Google Scholar

[6] V. V. Afanasev et al., Phys. Stat. Sol. (a) 162, 321 (1997).

Google Scholar

[7] R. Esteve et al., J. Appl. Phys. 106, 044514 (2009).

Google Scholar

[8] A. Constant et al., Solid-State Electronic 63, 70 (2011).

Google Scholar

[9] G. Y. Chung et al., IEEE Electron Device Lett. 22, 176 (2001).

Google Scholar

[10] D. Okamato et al., IEEE Electron Device Lett. 31, 710 (2010).

Google Scholar

[11] Y.K. Sharma et al., IEEE Electron Device Lett. 34, 175 (2013).

Google Scholar

[12] A. Modic et al., IEEE Electron Device Lett. 35, 894 (2014).

Google Scholar

[13] S. M. Thomas et al., Mater. Sci. Forums 778, 599 (2014).

Google Scholar

[14] S. Thomas, IEEE Journalof Electron Devices Society 2, 114 (2014).

Google Scholar

[15] E. H. Nicollian et al., MOS Physics and Technology (John Wiley and Sons, Hoboken, USA, 2003).

Google Scholar

[16] J. Rozen et al., J. Appl. Phys. 105, 124506 (2009).

Google Scholar