Simulating the Influence of Mobile Ionic Oxide Charge on SiC MOS Bias-Temperature Instability Measurements

Article Preview

Abstract:

We report here on results obtained using a time-dependent drift-diffusion model to simulate ion transport in the gate oxide of a SiC MOS device during bias-temperature instability measurements to assess the impact on threshold voltage under typical testing conditions. Measured threshold voltage is found to depend strongly on the temperature and mobile ion species, which in combination with the measurement parameters determine how the ions react to the stress and measurement sequence. Simulations show that, based on their mobilities, both potassium-like and copper-like ions may be responsible for experimental observations of a negative trend in threshold instability above 100 °C for SiC MOS devices.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 821-823)

Pages:

697-700

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Matocha and V. Tilak, Understanding the Inversion-Layer Properties of the 4H-SiC/SiO2 Interface, Mater. Sci. Forum, vol. 679–680, p.318–325, Mar. (2011).

DOI: 10.4028/www.scientific.net/msf.679-680.318

Google Scholar

[2] D. B. Habersat, A. J. Lelis, and R. Green, Detection of Mobile Ions in the Presence of Charge Trapping in SiC MOS Devices, Mater. Sci. Forum, vol. 717–720, p.461–464, May (2012).

DOI: 10.4028/www.scientific.net/msf.717-720.461

Google Scholar

[3] A. Chanthaphan, T. Hosoi, S. Mitani, Y. Nakano, T. Nakamura, T. Shimura, and H. Watanabe, Investigation of unusual mobile ion effects in thermally grown SiO2 on 4H-SiC(0001) at high temperatures, Appl. Phys. Lett., vol. 100, no. 25, p.252103–252103–4, Jun. (2012).

DOI: 10.1063/1.4729780

Google Scholar

[4] A. J. Lelis, D. Habersat, R. Green, and N. Goldsman, Temperature-Dependence of SiC MOSFET Threshold-Voltage Instability, Mater. Sci. Forum, vol. 600–603, p.807–810, (2009).

DOI: 10.4028/www.scientific.net/msf.600-603.807

Google Scholar

[5] D. B. Habersat, A. J. Lelis, and N. Goldsman, Simulating Ion Transport and its Effects in Silicon Carbide Power MOSFET Gate Oxides, in 2013 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2013, p.324–327.

DOI: 10.1109/sispad.2013.6650640

Google Scholar

[6] A. J. Lelis, D. Habersat, R. Green, A. Ogunniyi, M. Gurfinkel, J. Suehle, and N. Goldsman, Time Dependence of Bias-Stress-Induced SiC MOSFET Threshold-Voltage Instability Measurements, Electron Devices IEEE Trans. On, vol. 55, no. 8, p.1835–1840, Aug. (2008).

DOI: 10.1109/ted.2008.926672

Google Scholar

[7] S. Selberherr, Analysis and Simulation of Semiconductor Devices. [Mit Fig. ] - Wien 1983. 6, 2, 451 Bl. 4°. Springer-Verlag, (1984).

Google Scholar

[8] G. Greeuw and J. F. Verwey, The mobility of Na+, Li+, and K+ ions in thermally grown SiO2 films, J. Appl. Phys., vol. 56, no. 8, p.2218–2224, (1984).

DOI: 10.1063/1.334256

Google Scholar

[9] M. W. Hillen, G. Greeuw, and J. F. Verweij, On the mobility of potassium ions in SiO2, J. Appl. Phys., vol. 50, no. 7, p.4834–4837, Jul. (1979).

DOI: 10.1063/1.326547

Google Scholar

[10] Y. Shacham‐Diamand, A. Dedhia, D. Hoffstetter, and W. G. Oldham, Copper Transport in Thermal SiO2, J. Electrochem. Soc., vol. 140, no. 8, p.2427–2432, Aug. (1993).

DOI: 10.1149/1.2220837

Google Scholar

[11] E. I. Goldman, A. G. Zhdan, and G. V. Chucheva, Ion transport phenomena in oxide layer on the silicon surface and electron-ion exchange effects at the SiO2/Si interface, J. Appl. Phys., vol. 89, no. 1, p.130–145, (2001).

DOI: 10.1063/1.1327610

Google Scholar