The Influence of Neutron Irradiation on Electrical Characteristics of 4H-SiC Power Devices

Article Preview

Abstract:

Commercial 1200V and 1700V MPS diodes and 1700V vertical JFETs produced on 4H-SiC n-type epilayers were neutron irradiated with fluences up to 4x1014 cm-2 (1 MeV neutron equivalent Si). Radiation defects and their effect on carrier removal were investigated by capacitance deep-level transient spectroscopy, I-V and C-V measurement. Results show that neutron irradiation introduces different point defects giving rise to deep acceptor levels which compensate nitrogen doping of the epilayer. The carrier removal rate increases linearly with nitrogen doping. Introduced defects deteriorate ON-state characteristics of irradiated devices while their effect on blocking characteristics is negligible. The effect of neutron irradiation can be simulated by TCAD tools using a simple model accounting for introduction of one dominant deep level (Z1/Z2 centre).

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 821-823)

Pages:

785-788

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Bhatnagar and B. J. Baliga, Comparison of 6H-SiC, 3C-SiC, and Si for Power Devices, IEEE Trans. Electron Devices 40 (1993) 645-655.

DOI: 10.1109/16.199372

Google Scholar

[2] Information on http: /www. cree. com.

Google Scholar

[3] SJEP170R550 Datasheet, Rev. 1. 4, SemiSouth, Feb. (2011).

Google Scholar

[4] M. Košťál, V. Rypar, M. Švadlenková, F. Cvachovec, B. Jánský and J. Milčák, Irradiation Capabilities of LR-0 reactor vith VVER-1000 mock-up core, Appl. Radiat. Isot., 82, 2013, 193-199.

DOI: 10.1016/j.apradiso.2013.07.031

Google Scholar

[5] P. Hazdra, V. Záhlava, J. Vobecký, Point defects in 4H-SiC epilayers introduced by neutron irradiation, Nucl. Instrum. Methods Phys. Res. Sect. B 327 (2014) 124-127.

DOI: 10.1016/j.nimb.2013.09.051

Google Scholar

[6] G. Alfieri, E.V. Monakhov, B.G. Svensson and A. Hallén, Defect energy levels in hydrogen implanted and electron irradiated n type 4H silicon carbide, J. Appl. Phys. 98 (2005) 113524.

DOI: 10.1063/1.2139831

Google Scholar

[7] F. Nava, A. Castaldini, A. Cavallini, P. Errani and V. Cindro, Radiation Detection Properties of 4H-SiC Schottky Diodes Irradiated Up to 1016 n/cm2 by 1 MeV Neutrons, IEEE Trans. Nucl. Sci. 53 (2006) 2977-2982.

DOI: 10.1109/tns.2006.882777

Google Scholar

[8] L. Storasta, J. P. Bergman, E. Janzén, A. Henry and J. Lu, Deep levels created by low energy electron irradiation in 4H-SiC, J. Appl. Phys. 96 (2005) 4909-4915.

DOI: 10.1063/1.1778819

Google Scholar

[9] E.V. Kalinina, G.F. Kholuyanov, D.V. Davydov, A.M. Strel'chuk, A. Hallén, A.O. Konstantinov, V.V. Luchinin and A. Yu. Nikiforov, Effect of Irradiation with Fast Neutrons on Electrical Characteristics of Devices Based on CVD 4H-SiC Epitaxial Layers, Semiconductors 37 (2003).

DOI: 10.1134/1.1619523

Google Scholar

[10] D. Åberg, A. Hallén, P. Pellegrino, B. G. Svensson, Nitrogen deactivation by implantation induced defects in 4H-SiC epitaxial layers, Appl. Phys. Lett. 78 (2001) 2908-2910.

DOI: 10.1063/1.1369611

Google Scholar

[11] J. Vobecký, P. Hazdra, V. Záhlava, A. Mihaila and M. Berthou, ON state characteristics of proton irradiated 4H SiC Schottky diode: The calibration of model parameters for device simulation, Solid State Electron. 94 (2014) 32-38.

DOI: 10.1016/j.sse.2014.02.004

Google Scholar