High-Speed Solution Growth of Single Crystal AlN from Cr-Co-Al Solvent

Article Preview

Abstract:

We achieved a high growth rate in solution growth of AlN single crystal by suppressing unintentional precipitations near the surface of solvent and by increasing the equilibrium nitrogen concentration in the solvent. In order to suppress unintentional precipitations, we made the solvent supersaturated just above the surface of the substrate by optimizing the composition of the solvent and the temperature distribution based on thermodynamic numerical analysis. In particular, we focused on interactions between nitrogen or aluminum and solvent elements, leading to the increase of the equilibrium nitrogen concentration. We selected chromium and cobalt due to their high affinity with nitrogen or aluminum. Consequently, we successfuly achieved growth rate as high as 200 μm/h in maximum.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1210-1213

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. P. Chow, R. Tyagi, Wide bandgap compounds semiconductors for superior high-voltage unipolar power devices, IEEE Trans. Electron Devices 41 (1994) 1481.

DOI: 10.1109/16.297751

Google Scholar

[2] T. Kinoshita, T. Obata, T. Nagashima, H. Yanagi, B. Moody, S. Mita, S. Inoue, Y. Kumagai, A. Koukitsu, Z. Sitar, Performance and reliability of deep-ultraviolet light emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy, Appl. Phys. Express 9 (2013).

DOI: 10.7567/apex.6.092103

Google Scholar

[3] A. S. Segal, S. Y. Karpov, Y. N. Makarov, E. N. Mokhov, A. D. Roenkov, M. G. Ramm, Y. A. Vodakov, On mechanisms of sublimation growth of AlN bulk crystals, J. Cryst. Growth 211 (2000) 68.

DOI: 10.1016/s0022-0248(99)00844-1

Google Scholar

[4] Y. Kumagai, T. Yamane, A. Koukitsu, Growth of thick AlN layers by hydride vapor-phase epitaxy, J. Cryst. Growth 281 (2005) 62.

DOI: 10.1016/j.jcrysgro.2005.03.011

Google Scholar

[5] S. Dost, B. Lent, Single crystal growth of semiconductor from metallic solutions, Elsevier, Oxford (2007).

Google Scholar

[6] K. Kamei, Y. Shirai, T. Tanaka, N. Okada, A. Yauchi, H. Amano, Solution growth of AlN single crystal using Cu solvent under atmosphere pressure nitrogen, Phys. Stat. Sol. 4 7 (2007) 2211.

DOI: 10.1002/pssc.200674718

Google Scholar

[7] A. T. Dinsdale, SGTE data for pure elements, Calphad 15 4 (1991) 317-425.

DOI: 10.1016/0364-5916(91)90030-n

Google Scholar

[8] Y. Du, R. Wenzel, R. Schmid-Fetzer, Thermodynamic analysis of reactions in the Al-N-Ta and Al-N-V systems, Calphad 22 1 (1998) 43-58.

DOI: 10.1016/s0364-5916(98)00013-3

Google Scholar

[9] J. L. Murray, The Al-Cr system, Journal of Phase Equilibria 19 4(1998) 368-375.

Google Scholar

[10] K. Frisk, A thermodynamic evaluation of the Cr-N, Fe-N, Mo-N and Cr-Mo-N systems, Calphad 15 1 (1991) 79-105.

DOI: 10.1016/0364-5916(91)90028-i

Google Scholar

[11] K. Ishida and T. Nishizawa, The Co-Cr system, Bulletin of alloy phase diagram 11 4(1990) 357-370.

DOI: 10.1007/bf02843315

Google Scholar

[12] H. Ohtani, Y. Chen and M. Hasebe, Phase separation of the B2 structure accompanied by an ordering in Co-Al and Ni-Al binary systems, Materials Transactions 45 5 (2004) 1489-1498.

DOI: 10.2320/matertrans.45.1489

Google Scholar

[13] A.F. Guillermet, S. Jonsson, Predictive approach to thermodynamic properties of Co nitrides and phase-stability in the Co-N system, Z. Metallkd 83 (1992) 21-31.

DOI: 10.1515/ijmr-1992-830107

Google Scholar