Importance of SiC Stacking to Interlayer States at the SiC/SiO2 Interface

Article Preview

Abstract:

We investigated the effect of SiC stacking on the 4H-SiC/SiO2 interface via first principles calculations. Interlayer states are observed along the SiC conduction band edge, and are affected by the local structure at the interface. The location of these states changes depending on which of two lattice sites, h or k is at the interface. This difference is important for SiC based metal-oxide-semiconductor field-effect transistors which rely on the electronic structure of the conduction band.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

457-460

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] VV. Afanas'ev, F. Ciobanu, S. Dimitrijev, G. Pensl, and A. Stesmans, Band alignment and defect states at SiC/oxide interfaces, J. Phys.: Condens. Matter 16 (2004) S1839.

DOI: 10.1088/0953-8984/16/17/019

Google Scholar

[2] P. Déak, J. Knaup, T. Hornos, C. Thill, A. Gali, and T. Frauenheim, The mechanism of defect creation and passivation at the SiC/SiO2 interface, J. Phys. D 40 (2007) 6242.

DOI: 10.1088/0022-3727/40/20/s09

Google Scholar

[3] A. Gavrikov, A. Knizhnik, A. Safonov, A. Scherbinin, A. Bagaturyants, B. Potapkin, A. Chatterjee, and K. Matocha, First-principles-based investigation of kinetic mechanism of SiC(0001) dry oxidation including defect generation and passivation, J. Appl. Phys. 104 (2008).

DOI: 10.1063/1.3006004

Google Scholar

[4] T. Ono and S. Saito, First-principles study on the effect of SiO2 layers during oxidation of 4H-SiC Appl. Phys. Lett. 106 (2015) 081601.

DOI: 10.1063/1.4913598

Google Scholar

[5] S. Dhar, S. Haney, L. Cheng, S. -R. Ryu, A. K. Agarwal, L. C. Yu, and K. P. Cheung, Inversion layer carrier concentration and mobility in 4H–SiC metal-oxide-semiconductor field-effect transistors, J. Appl. Phys. 108 (2010) 054509.

DOI: 10.1063/1.3484043

Google Scholar

[6] G. Liu, B.R. Tuttle, and S. Dhar, Silicon carbide: A unique platform for metal-oxide-semiconductor physics, Appl. Phys. Rev. 2 (2015) 021307.

DOI: 10.1063/1.4922748

Google Scholar

[7] Y. Matsushita, S. Furuya, and A. Oshiyama, Floating Electron States in Covalent Semiconductors, Phys. Rev. Lett. 108 (2012) 246404.

DOI: 10.1103/physrevlett.108.246404

Google Scholar

[8] Y. Matsushita and A. Oshiyama, Interstitial Channels that Control Band Gaps and Effective Masses in Tetrahedrally Bonded Semiconductors, Phys. Rev. Lett. 112 (2014) 136403.

DOI: 10.1103/physrevlett.112.136403

Google Scholar

[9] K. Hirose, T. Ono, Y. Fujimoto, and S. Tsukamoto, First Principles Calculations in Real-Space Formalism, Electronic Configurations and Transport Properties of Nanostructures, Imperial College, London, (2005).

DOI: 10.1142/p370

Google Scholar

[10] J. R. Chelikowsky, N. Troullier, and Y. Saad, Finite-difference-pseudopotential method: Electronic structure calculations without a basis, Phys. Rev. Lett. 72 (1994) 1240.

DOI: 10.1103/physrevlett.72.1240

Google Scholar

[11] T. Ono and K. Hirose, Timesaving Double-Grid Method for Real-Space Electronic-Structure Calculations, Phys. Rev. Lett. 82 (1999) 5016.

DOI: 10.1103/physrevlett.82.5016

Google Scholar

[12] T. Ono and K. Hirose, Real-space electronic-structure calculations with a time-saving double-grid technique, Phys. Rev. B 72 (2005) 085115.

DOI: 10.1103/physrevb.72.085115

Google Scholar

[13] T. Ono, M. Heide, N. Atodiresei, P. Baumeister, S. Tsukamoto, and S. Blügel, Real-space electronic structure calculations with full-potential all-electron precision for transition metals, Phys. Rev. B 82 (2010) 205115.

DOI: 10.1103/physrevb.82.205115

Google Scholar

[14] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[15] L. Kleinman and D.M. Bylander, Efficacious Form for Model Pseudopotentials, Phys. Rev. Lett. 48 (1982) 1425.

DOI: 10.1103/physrevlett.48.1425

Google Scholar

[16] N. Troullier and J.L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43 (1991) (1993).

DOI: 10.1103/physrevb.43.1993

Google Scholar

[17] S. H. Vosko, L. Wilk, and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 58 (1980) 1200.

DOI: 10.1139/p80-159

Google Scholar